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Abstract

Climate change will increase the frequency and severity of natural disasters. This paper

examines the effects of such increases on the spatial organization of firms. Using data on the

global car industry and an event-study design, I document that nearby floods significantly

reduce assembly plant production, with partial reallocation to unaffected plants within the

firm. I develop a novel, quantitative, multiregion model in which firms choose their plant

locations and capacities to maximize expected profits amidst weather disruption risk. The

model captures firms’ incentives to diversify capacity across locations and hedge against

potential local disruptions. I estimate the model for the automotive industry and use it

to compute plant location and capacity choices under different probabilities of weather

disruptions according to possible climate change scenarios. With heightened risks, firms

build additional, smaller plants with larger spare capacities. This spatial reorganization

entails productivity losses, resulting in higher consumer prices.
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1 Introduction

This paper studies how the likelihood of extreme weather events shapes the spatial organi-

zation of firms. With the Intergovernmental Panel on Climate Change’s Sixth Assessment

Report (IPCC 2021a) predicting an increase in the frequency and severity of weather-related

natural disasters due to global warming, it becomes essential to comprehend how firms can

adapt to these changing conditions. Understanding the potential adaptation costs, as how

firm-level adaptation can buffer the impact of climate change on firms’ profits and consumer

welfare, is particularly relevant.

As responses to the rise in the frequency of weather disasters caused by a changing

climate, this paper explores two potential mechanisms of endogenous firm-level adapta-

tion. First, firms can modify their production sites’ location and capacity. Second, firms

with multiple production sites can exploit the flexibility built into their plant structure to

reallocate production from affected to unaffected plants.

These adaptation mechanisms could entail high costs for firms and consumers. When

firms reallocate production capacity across locations in response to climate hazards, they

shift production from more ex-ante productive places to less productive ones. As a result,

consumers experience higher prices and reduced variety, decreasing their surplus. Creating

a resilient production structure is also costly. Setting up multiple plants to hedge against

adverse shocks requires a sizable capital investment, and exploiting the flexibility of a mul-

tiplant scheme requires holding sites that operate with spare capacity.

I examine these specific adaptation margins in the global car industry.1 This industry

provides an ideal setting for studying this question, comprising multinational, multiplant

firms producing tradeable goods in physical sites susceptible to weather disasters. To this

end, I leverage a rich global dataset that links the production location at the plant level

with sales of individual car models.

Numerous car industry examples highlight these adaptation mechanisms. One notable

instance involves a Honda plant in Celaya, Mexico, that had to suspend operations for

nearly three months when torrential precipitation caused the local river to flood. While

Honda had prepared by setting up another plant in El Salto, about 160 kilometers away, it

could only partially compensate for the production loss due to its smaller capacity.2

1For example, in their 2021 Carbon Disclosure Project Report (CDP-BMW 2021), BMW states that
flexible production structures allow them to respond to business interruptions caused by physical climate
drivers, e.g., if the X3 production in Spartanburg is shut down, they can shift volumes to Rosslyn or
Shenyang.

2In Appendix A.1, I present a collection of news headlines about extreme weather events that have
caused significant disruptions to car production. In Figure A.1 in the Appendix, I show graphical evidence
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In the first part of the paper, I present evidence of severe floods’ disruptive consequences

on car production. These floods result from various meteorological and hydrological phe-

nomena, such as extreme rainfall, rapid snowmelt, tropical cyclones, and coastal storms,

likely intensified by climate change.3 Floods affect car production through direct damage

to facilities, transportation challenges for goods, inputs, and labor, and indirect impacts on

infrastructure and local supply chains.4 The timing of these events is exogenous to local

industry characteristics, and detailed historical flood data are available.

Using an event-study design, I document that a severe flood close to a car assembly site

causes a long-run decline in a plant’s production of around 30%. Multiplant firms reallocate

some production to their unaffected sites. By leveraging information on the production of

narrowly defined car models, I estimate that when a flood affects a plant, production in

other plants that produce at least one of the same models rises by 46%. However, firms are

able to offset only part of the decline by ramping up production at their other plants.

I develop a multiregion model of optimal plant location to understand how firms adapt

to the increasing likelihood of floods and assess the costs of these adaptation mechanisms.

In the model, firms are potentially multinational and can operate multiple plants as plat-

forms to serve different markets, as in Helpman et al. (2004) and Tintelnot (2017). Firms

choose their production plants’ location and capacity to maximize expected profits. They

face uncertainty about the exact productivity of each plant when making an irreversible

investment in plant capacity. After capacity is installed, productivity shocks, in the form

of adverse weather events, are realized, and firms choose the optimal production flows from

each plant to each market, conditional on their sunk plant location and capacity choices.

In deciding their plant configuration, firms face a tradeoff between proximity, cost min-

imization, and resilience. Trade costs provide incentives to set up plants close to large

markets. Locating plants close to customers might sacrifice setting up plants in locations

that minimize production costs. These two potentially conflicting incentives interact with a

third margin: production resilience. Since adverse productivity shocks occur with a certain

probability, firms have additional incentives to invest in capacity in multiple locations to

hedge against production disruptions in one of their plants.

of the flood, its impact on Honda’s production in the region, and the geographical location of both plants.
3See, e.g, IPCC 2021a, Hirabayashi et al. 2021, Bates et al. 2021, Li et al. 2022, and World Meteorological

Organization (2022).
4Ellison and Glaeser (1997) show that final assembly and car parts are among the most colocated industry

pairs in the United States. Klier and Rubenstein (2008) indicate that for the assembly plants in their sample,
5% of independent suppliers are located within 60 miles. For powertrains and transmissions, Head et al.
(2024) note that 40% of powertrains and 20% of transmissions are sourced within 100km of the assembly
plant.
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The resilience motive naturally arises because firms can adjust production in response

to realized productivity shocks, allowing them to shift production from disrupted to undis-

rupted plants. However, the option to switch production across plants is constrained by

their initial investments in capacity. Ex-ante, firms have incentives to hold additional ca-

pacity in their chosen locations to hedge against potential plant disruptions.

Plant location and capacity choices are interdependent across locations because plants

can be export platforms. These decisions must be taken jointly, which is challenging if the

number of potential locations is significant, as in the global car industry. The problem is

further complicated because it involves optimization under uncertainty over a large set of

states of the world. Rather than devolving into a combinatorial discrete choice problem,

in the model, the optimal plant capacity choices are the solution to a convex optimization

problem for which efficient numerical algorithms exist.

The model delivers quantitative predictions about the geography of global production,

namely, where plants are located, how large these plants are, where cars are produced, and

the flows of vehicles between production locations and markets. I estimate the model by

matching the current geographic distribution of car production. I leverage the structure of

the model to estimate demand parameters and trade costs, and simulation-based methods

to estimate the determinants of productivity and capacity costs for each location.

The main goal of the quantitative model is to evaluate how firms will choose their pro-

duction locations as the probability of weather disasters increases. I draw upon projections

from the CMIP6 climate models to inform these probability increases in specific regions.

Precisely, I measure the likelihood of these adverse weather events as the probabilities of

historical 10- and 100-year five-day precipitation events, a proxy for floods, happening in

a given location under different Shared Socioeconomic Pathways (SSPs), which capture

alternative possible future greenhouse gases emission trajectories, for the period 2035–2064.

Changes in the probabilities of extreme weather events are heterogeneous across space.

For instance, in SSP5-8.5, the worst-case emissions scenario considered by the IPCC, the

probability of a 100-year five-day precipitation event, which historically is 1% in any given

year, is expected to increase in Tennessee to 2.2%, in Michigan to 2.3%, and in Tokyo

to 1.4%. By contrast, the probability of such an event in Tangier, Morocco, decreases to

0.8%. On average, in this climate change scenario, 10-year extreme precipitation events and

100-year extreme precipitation events become 1.46 and 1.89 times more likely, respectively.

In my main counterfactual exercise, I change probabilities from the current flood risk

landscape to the probabilities projected by climate change models in the SSP5-8.5 scenario

and recompute plant locations and capacities for each firm. With heightened risks, firms
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build additional, smaller plants. The average firm increases its number of plants by 3.6%,

but the average capacity per plant decreases by 7.1%. Firms shrink considerably; on average,

production capacity declines by 4.8% and profits by 4.0%. Firms operate with more spare

capacity, holding 7.0% of their total capacity for hedging purposes.

These findings reveal that firms can adapt to an increase in the probability of adverse

weather events by investing in more plants, thereby reducing their exposure to local disrup-

tions. Also, firms hold more spare capacity in their plants to have the option to reallocate

production after adverse shocks. This reorganization is costly, as firms shrink while bearing

the costs of disproportionately large capacity choices to hedge against disruptions.

Geographically, firms increase production and capacity in places close to large markets

with relatively smaller probabilities of extreme precipitation events, such as Central Mex-

ico, the Western United States, Northern Africa, Turkey, Southern India, and the South

of Europe. On the other hand, there is a decrease in production in England, the US Mid-

west, Western India, and Northeastern France. With this reallocation, average productivity

declines by 7.1%, and consumer prices increase by 2.6%. Although almost all countries ex-

perience increased consumer prices, the incidence is heterogeneous.

Regarding how effective this adaptation is at reducing the losses due to climate change,

the average profit decline is 4.1% when firms reoptimize their plant configuration choices.

In contrast, this decline would be 5.3% if firms do not adapt. Leveraging these adaptation

channels, car firms can avoid approximately 20% of the prospective losses from climate

change. However, firm-level adaptation reduces consumer surplus. For consumers, the real-

location of plants across space is an aggregate shock as all varieties become more expensive

due to the losses in productivity and capacity. When firms do not adapt to climate change,

consumer price indices increase, on average, by 1.0% as disruptions to individual firms are

not very costly for consumers in industries with many varieties. Consumers can adapt to

idiosyncratic increases in the price of one variety by substituting it for others.

This paper relates to several strands of the literature. First, it is closely related to the

literature that studies the impact of climate change and weather disasters on the distribution

of economic activity across and within cities, regions, and countries (e.g., Desmet et al. 2021,

Balboni 2021, Nath 2022, Jia et al. 2022, Cruz and Rossi-Hansberg 2023, Hsiao 2023, and

Bilal and Rossi-Hansberg 2023). This paper contributes novel insights by empirically and

theoretically analyzing mechanisms of endogenous potential adaptation that firms can use

to lessen the impact of extreme weather events caused by a changing climate. Additionally,

it is closely related to Indaco et al. (2020), Pankratz and Schiller (2021), Gu and Hale

(2022), Balboni et al. (2023) and Castro-Vincenzi et al. (2024a), that explore the effect of
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weather disasters on firms’ employment, supplier choice, FDI and production networks.

Second, this paper adds to the literature on the location of multinationals. Several

papers study multinational production, quantitatively or theoretically, such as Helpman

et al. (2004), Ramondo and Rodŕıguez-Clare (2013), Ramondo et al. (2013), Tintelnot

(2017), Arkolakis et al. (2018), Head and Mayer (2019) and Arkolakis et al. (2023). This

paper studies the joint problem of location and capacity choice that had not been introduced

in quantitative multinational models before. Including capacity constraints allows me to

provide a general framework for analyzing how changes in the probability distribution of

demand or supply shocks affect firms’ optimal plant location and how these shocks propagate

within their plant network.5

The computational approach I introduce is novel to the quantitative plant location

literature. The two dominant approaches to studying these problems consist of either

choosing for each market, the least cost supplier, abstracting from fixed costs, making

sourcing decisions independent of each other (e.g., Ramondo et al. 2013, Ramondo 2014

or Arkolakis et al. 2018), or including fixed costs, allowing for interdependencies across

choices, but creating a high-dimensional, nonconvex problem (e.g., Tintelnot 2017, Arkolakis

et al. 2023).6 Instead, I formulate the firm’s plant location and capacity choice problem

as a convex optimization that allows for interdependencies while preserving computational

tractability.

Third, this paper is related to the literature that studies supply chain resilience and

disruptions. Jiang et al. (2021), Kopytov et al. (2023), Grossman et al. (2023a) and Gross-

man et al. (2023b) analyze, theoretically, the incentives for investment in resilience and

optimal policy when firms face potential supply chain disruptions. These supply chain dis-

ruptions are quantitatively significant, as shown by Barrot and Sauvagnat (2016), Boehm

et al. (2019), and Carvalho et al. (2020), all of whom leverage natural disasters to study the

role of firm-level linkages in propagating input disruptions. I contribute to this literature

by proposing a quantitative framework with investment in resilience to disruptions through

plant organization in the face of an increase in risk.

The rest of the paper is structured as follows. In Section 2, I describe the data and

5This paper also builds on the theoretical literature pioneered by Pindyck (1988), Pindyck (1993) and
Dixit and Pindyck (1994) that characterizes the problem of a firm making an irreversible capacity investment
under uncertainty about output or input prices. For multinationals, Rob and Vettas (2003) study, theoreti-
cally, the tradeoff between exporting or creating productive capacity via FDI to serve a foreign market when
demand is uncertain.

6See Antràs et al. (2017), Antràs et al. (2022), Alfaro-Ureña et al. (2024), and Castro-Vincenzi et al.
(2024b) for examples of papers in international trade that solve combinatorial problems with interdepen-
dencies by leveraging properties of payoff functions.
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document the impact of large floods on car production using an event-study design. In

Section 3, I present a theoretical model of plant location with capacity constraints and an

efficient solution strategy. Section 4 describes the estimation strategy for the structural

model. Section 5 contains different climate change counterfactuals. Section 6 concludes.

2 Empirical Evidence

In this section, I estimate the effect of severe floods on car plants’ production using detailed

global plant-level production data for the automotive industry between 2000-2019 and data

on historical floods since 1985.

2.1 Data

I use a dataset compiled by IHS Markit of new car registrations that reports quarterly flows

of individual car models by plant of assembly and country of sale. The dataset covers the

period 2000-2019 and contains information for 354 car brands, 77 countries of sale, and

1105 production plants in 54 countries. In a given quarter, the average firm has three active

plants, the median number of plants per firm is 2, the 90th percentile is 7, and the maximum

is 18. Different versions of this data have been used in previous literature, e.g., in Coşar

et al. (2016) and Head and Mayer (2019).

I use the geographical coordinates of each plant’s location to map them to Global Admin-

istrative Unit Layers (GAUL), which are a set of administrative units with global coverage

that are consistent across years and borders, created by the Food and Agriculture Organiza-

tion (FAO).7 These administrative units have two spatial levels, GAUL1, which corresponds

to the first layer in the hierarchy within a country administrative organization, e.g. states

in the United States, and GAUL2, which is the second level, e.g. counties in the United

States. Plants are located in 301 GAUL1 units and 554 GAUL2 units.

I obtain information about historical floods from the Dartmouth Flood Observatory

(DFO), which uses different sources, such as news, governmental statements, satellite im-

agery, and remote sensing, to create the Global Archive of Large Flood Events. For each

flooding event, the database collects information about the start and end dates of the event,

the causes of the flood, an estimate of the geographical location, and a measure of severity.

This archive starts in 1985.

In Figure 1, I show a map with the global distribution of assembly plants and the

location of the floods in the dataset. The map shows that car plants are mostly located in

7More information about the Global Administrative Unit Layers of the FAO can be
found in the following website https://data.apps.fao.org/map/catalog/static/api/records/

9c35ba10-5649-41c8-bdfc-eb78e9e65654.
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Figure 1: The Location of Car Production Plants and Floods

Notes: In this map, the red dots correspond to the location of a plant in the car production dataset. The dark
blue dots correspond to centroids of 100-year floods that have taken place since 2000. Light blue dots correspond
to 10-year floods. The administrative borders in gray correspond to GAUL1 units.

the Midwest of the United States, Western Europe, Eastern China, Japan, and Southeast

Asia. It also reveals that, currently, car plants are located in places that have experienced

floods.

Flooding events are rare, affecting plants in very few periods. Plants are affected by

floods occurring at most 100km away in only 2.4% of the quarters—however, 77% of the

plants in the sample experience a flood between 2000 and 2019. On average, 1.9 floods

occur less than 100km from a plant.8 By flood severity, floods with a recurrence interval of

10 years are more frequent than 100-year floods. 70% of plants experienced a 10-year flood

close to them, but only 25% of the plants are affected by 100-year events.

For most of the empirical analysis, the unit of observation is the production plant and

the main outcome is the log of the quantity of cars produced in an assembly plant in a

quarter.9 I define the treatment as the occurrence of a flooding event with a centroid

100 kilometers or less away from a car assembly plant, although the results are robust to

different distance thresholds. In all the specifications, standard errors are clustered at the

GAUL-1 level to capture potential correlation in the error terms across plants located in

the same administrative unit and serial correlation over time.

2.2 Estimation Strategy

To estimate the effect of severe floods on car production, I use the estimator suggested in

de Chaisemartin and D’Haultfoeuille (2022a). This is a differences-in-differences estimator

8From 2000 to 2019, 20% of plants were within 25km of at least one flood, and 40% within 50km.
9It is worth noting that I infer plant production in a quarter from data on registration. According to

IHS, the average time between production and registration is around a month for domestic transactions to
three quarters for international transactions. However, there is variation in lead times depending on demand
and supply conditions.
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of contemporaneous and dynamic treatment effects robust to heterogeneity that allows for

the treatment to vary over time. It is given by,

DIDiℓ � Yi,Fi�ℓ � Yi,Fi�1 �
¸

i1:Fi1¡Fi�ℓ

1°
i1:F 1i¡Fi�ℓ 1

�
Yi1,Fi�ℓ � Yi1,Fi�1

�
,

which aggregates into

DID�,ℓ �
¸

i:Fi�ℓ¤T

DIDiℓ

N1
ℓ

, (1)

where Yi,Fi�ℓ corresponds to the outcome of interest for observation i at moment ℓ periods

after plant i received the treatment for the first time in period Fi. N
1
ℓ are the number of

plants, reaching ℓ periods after their first extreme flood, before or at the end of the sample

period T . The estimator compares the value of the outcome for units that were treated ℓ

periods ago with units not-yet treated ℓ periods after each unit’s first treatment. The first

difference compares the outcome ℓ periods after the plant was treated for the first time with

the outcome the period before the unit was treated, and the second difference compares

this long difference with the average difference for not-yet treated units by period Fi � ℓ.

2.3 The Impact of Weather-Related Disasters on Car Production

I start by estimating the effect of the occurrence of a flood close to a plant on the number

of cars produced.10 In Figure 2a, I show the estimates of Equation 1 for the periods

between the moment of the first flood up until 40 quarters afterward. The effect of floods

on plant production is persistent and negative, stabilizing around 20 quarters after the first

treatment. I compute the long-run effect by averaging the point estimates for 20 to 40

quarters after the unit was treated for the first time. This figure shows that the long-run

effect caused by a flood on car production is a reduction in the number of cars produced of

about 0.34 log points relative to production in plants that have not been yet treated.

In Figures 2b and 2c, I estimate event studies corresponding to floods with a 100-year

recurrence interval and floods with at least a 10-year recurrence interval, but less than 100-

year. As expected, the effect of the most severe floods, the 100-year floods, is sizable and

negative. The long-run effect of the occurrence of a 100-year flood close to a plant indicates

that the most severe floods in the sample reduce car production in 0.69 log points. For the

less severe floods, the long-run effect corresponds to a decrease of 0.28 log points.

10The sample used to estimate the total impact of floods on car production comprises assembly plants
that produce 50 units or more during all quarters between 2000-2019 and did not experience any flooding
events in the 28 quarters before the first period in the sample (2000Q1) to avoid mislabeling plants that had
already experienced a treatment before the sample as being untreated.
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Figure 2: The Impact of Severe Floods on Car Production

(a) All Floods
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(b) 100-Year Floods

Long Run Average:  -0.69
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(c) 10-Year Floods

Long Run Average:  -0.28
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Notes: In these plots, the y-axis shows the values of Equation 1 for the outcome Log Plant Production for 0 to 40 quarters
after the plant was flooded for the first time. The pre-trend estimates are computed using the long-difference placebo
estimators in de Chaisemartin and D’Haultfoeuille (2022a). The sample comprises production plants that produce 50 units
or more during all the quarters between 2000-2019 and did not experience any flooding events on the 28 quarters before
the first period in the sample. Standard errors are clustered at the GAUL1 administrative level and computed with 100
bootstrap replications. The circles correspond to the point estimate, the bars correspond to 95% confidence intervals and
the colors of the circle mean significant at 5%, at 10%, not significant at 10%.

Having established that extreme floods have a negative and persistent impact on plant

production, I document that firms use their multiplant configuration to offset the drop

in an impacted plant’s production by shifting production to other unaffected plants. To

demonstrate this, first, I use information on the location of production of specific car models,

defined by their brand (i.e., Ford), nameplate (i.e., Focus), and body type (i.e., Sedan), to

establish which plants are similar within a manufacturer. Then, I define a new treatment

variable for each plant that identifies whether one of its sibling plants experienced a flood

in a particular period to capture if a plant is indirectly affected by producing at least one of

the car models manufactured in a directly affected plant. Finally, I estimate Equation 1 on

the subsample of plants with at least one sibling that are active in all the sample periods

and do not experience a direct treatment during the sample period or before. Figure 3

reveals that in the long run there is a reallocation of production to other plants that do

not experience floods; production increases by around 0.46 log points relative to plants that

did not experience any disasters directly or indirectly through the firm’s plant network.

Although this reallocation is significant, an analysis of total production at the firm level,

shown in Figure 3c, reveals that exposure to floods reduces the firm’s car production in the

medium term. Production drops by about 25% one year after the shock, but eventually

recovers.

Finally, I explore how large floods affect the extensive margin of production. I estimate
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Figure 3: The Impact of Severe Floods on Unaffected Plants

(a) Direct Effect
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(b) Indirect Effect

Long Run Average:   0.46
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(c) Firms’ Total Production
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Notes: In this plot, the y-axis shows the values of Equation 1 for the outcome Log Plant Production for 0 to 40 quarters
after a related plant was flooded for the first time. The pre-trend estimates are computed using long-difference placebo
estimators. Panel (a), is the same plot as Figure 2a. In Panel (b), the sample comprises plants that produce 50 units or
more during all the quarters between 2000-2019 and did not experience any flooding events during the sample period or
on the 28 quarters before the first period in the sample. In Panel (c), I aggregate plants within the same manufacturer. I
only include manufacturers that are actively producing in all the periods in the sample, and produce more than 250 cars
in each quarter, and I add pre-sample treatment status as a non-parametric control. Standard errors are clustered at the
GAUL1 administrative level in Figures 3(a) and 3(b), and at the firm-level in Figure 3(c) and computed with 100 bootstrap
replications. The circles correspond to the point estimate, the bars correspond to 95% confidence intervals and the colors
of the circle mean significant at 5%, at 10%, not significant at 10%.

Equation 1 using as outcome a binary variable equal to 1 if a plant is active in a given

period, conditioning on plants that were active in the first period of the sample. Figure

B.1a shows that the probability that a plant is active is unaffected by experiencing a flood.

In Figure B.1b, I change the unit of observation to GAUL2 regions to document that the

number of plants in a location decreases by 0.09 log points after a flood, which is suggestive

of firms avoiding these regions when establishing new production plants.

2.4 Robustness

One concern with the estimates above is that the treatment effects captured in Figure 2

could be the result of spillovers between the treatment and control groups, in a potential

violation to the Stable Unit Treatment Value Assumption (SUTVA). In my estimation

setting, the potential treatment spillovers are observed. To do this, I directly control for

floods experienced by other plants within the same firm that produce car models with

the same platform, using the estimator proposed in de Chaisemartin and D’Haultfoeuille

(2022b).11 In Figure B.2 in the Appendix, I present the results. The values for these

11Production lines within plants are not perfectly substitutable between car models. In most cases,
these production lines specialize in producing cars within the same platform as mixed assembly lines cause
efficiency losses because of different cycle times and equipment adjustments (see Markus 2021). A platform
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estimates are qualitatively and quantitatively similar as the ones depicted in Figure 2.

One could also be worried that the distance threshold of 100km is not correctly capturing

the effect of floods on the number of cars produced in a plant. In Figure B.3 of the

Appendix, I compute the estimator in Equation 1, but define the flood thresholds at 25km,

50km, 75km, 150km, and 200km. In the cases that I decrease the threshold, the long run

averages and the dynamics in these plots are similar to the baseline figure. However, the

confidence intervals are somewhat larger, reflecting the fact that as I reduce the thresholds

the number of treatments declines rapidly. These findings provide evidence that floods

affect car production through local direct and indirect disruptions, not only to the plant

itself but to the whole local production environment.

3 Quantitative Model

In this section, I present a model of optimal plant location and capacity investments under

uncertainty. Firms choose where to set up their assembly plants, among a set of locations,

and invest in capacity in each of those locations. Firms are, potentially, multinational and

multiplant, and have the possibility to use their plants as export platforms, as in Helpman

et al. (2004) and Tintelnot (2017). Firms choose their horizontal spatial production or-

ganization to maximize expected profits before extreme weather disruptions occur. Thus,

at the time of their capacity decision, firms do not know the actual productivity of each

potential plant location, just the location-specific probability distributions of these produc-

tivities. After that, weather events are realized, and firms choose production flows from

each of their plants to final markets, conditional on a capacity constraint for each potential

location.

3.1 Setup

I model the problem of firm n headquartered in country hn, with quality equal to γn and

fundamental productivity equal to ϕn. The firm is the owner of a blueprint to produce a

single differentiated variety, and chooses in which locations to erect its plants in order to

serve multiple markets. I index plant locations by i � 1, . . . , I and markets by j � 1, . . . , J .

The model is static and the firm makes decisions in two stages. At the beginning of the

first stage, firm n knows the value of the triplet of its fundamentals, thn, γn, ϕnu, the costs

of building capacity in each location, tαinu
I
i�1, market-specific demand shifters, tβjnu

J
j�1,

and a vector of firm-location potential plant productivities, tzinu
I
i�1. With this information,

the firm makes sunk, irreversible investments in capacity in different locations. After these

is a shared set of common design, engineering, and components for distinct car models.
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investments are incurred, a vector tκinu
I
i�1 of weather shocks that determine the actual

productivities of all of its plants is realized. Finally, the firm chooses its production plan to

maximize profits conditional on the available capacity and the productivity of each plant.

Geography features in the model in different ways. First, there are bilateral iceberg trade

costs that firms have to pay to ship cars across locations. Second, production locations are

heterogeneous in their average productivity, average capacity costs, and in the probability

of experiencing floods. Finally, the cost of capacity and the productivity of a plant depend

on how far the location of a plant is from the firms’ headquarters.

3.2 Demand Function and Market Structure

In each market j, consumers have quasilinear preferences over a homogeneous numeraire,

Q0, and a CES aggregator, QC , of varieties indexed by ω with elasticity equal to σ ¡ 1,12

UjpQO, QCq � QO �Rj log

�»
ωPΩj

pψjpωqqjpωqq
σ�1
σ dω

� σ
σ�1

, (2)

where Rj measures total expenditure on cars in market j, Ωj is the set of available varieties

and ψjpωq is a demand shifter specific to variety ω and market j. This demand shifter

combines two components; the brand-specific quality γn and a home market effect. I further

assume that goods of the same variety produced in different origins are perfect substitutes.

With these preferences, the demand for variety ω in market j is

qjpωq � pjpωq
�σ ψjpωqRjP

σ�1
jlooooooomooooooon

�βjpωqσ

, (3)

where pjpωq is the price of variety ω in country j, and Pj is the ideal price index given by

Pj �

�»
ωPΩj

�
pjpωq

ψjpωq


1�σ

dω

� 1
1�σ

. (4)

I summarize total expenditure, the ideal price index, and the demand shifter in a single

variable βjpωq that measures the size of market j for variety ω. Each good ω is produced

by a single firm n under monopolistic competition.

The other consumption good QO is homogeneous, freely tradeable, and its consumption

is large enough so that it is produced in every single country pinning down wages, wj . These

12This utility for the representative agent can be microfounded by a population of consumers in a country
behaving according to a logit discrete choice model à la Anderson et al. (1988).
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assumptions imply that the only aggregate variables to solve in the industry equilibrium

are the price indices, Pj .

3.3 Production Technology

A firm can produce its variety in I different locations. Each plant can be used to serve the

market where it is located and as an export platform. A firm that establishes a plant in a

given location makes a sunk irreversible investment in capacity, determining the maximum

number of units of goods the firm can produce in all states of the world.

The production function for each plant is linear in its labor input, but the total quantity

produced is subject to a capacity constraint. That is,

Qin � κinϕnzinlooomooon
�εin

Lin s.t Qin ¤ Cin. (5)

where Qin denotes the total number of cars produced by firm n in location i and εin is

the ex-post productivity of firm n in that location. Productivity is the product of three

variables: firm n’s fundamental productivity ϕn, a local productivity zin, both known by

the firm at the time of making the capacity investment decision, and a weather disaster,

κin, that is unknown to the firm when choosing its capacity. κin follows the distribution,

κin �

$'''&
'''%
κ1 with probability ri

κ2 with probability si

1 with probability 1� ri � si,

with κ1   κ2   1 and ri   si. This modeling of the weather shocks aims to be parallel

to the 10- and 100-year flooding events explored in Section 2. Probabilities are potentially

heterogeneous and could be correlated across locations i.13

The firm’s total production in a given location is the sum of the shipments of that facility

to all the potential final markets. Trade of automobiles across space is costly. In order to

ship one car from country i to country j, firms need to produce τij ¥ 1 units of the good.

13I model extreme weather events using a three-point discrete distribution because it provides a clear
mapping between the historical data on floods in Section 2, the model, and the extreme event projections
provided by climate models. However, any distributional assumption for the shocks can be chosen for the
model as in the solution algorithm I use simulations to approximate expected profits.
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Therefore, total production in a plant can be written as,

Qin �
J̧

j�1

τijqijn, (6)

where qijn is the number of cars that arrive to market j, produced in location i by firm n.

Building capacity in a location is costly. Firm n needs to make an irreversible investment

to be able to produce at most Cin cars in location i equal to finpCinq. The capacity cost

function is heterogeneous across locations and firms.

I assume finpCinq satisfies three conditions. First, it is strictly positive for all Cin ¡ 0.

Second, it is strictly increasing in capacity, f 1inpCinq ¡ 0 for all i, n and Cin ¥ 0. This

assumption is quantitatively relevant as f 1inp0q ¡ 0 is required to generate zeros in capacity.

Third, I assume that the investment function is weakly convex. In the description of the

firm’s problem and in the quantitative application, I assume that finpCinq � αinCin.

3.4 The Firm’s Problem

The goal of firm n is to choose a production capacity in every location to maximize its

expected profits net of the investments incurred in capacity costs.14 Proceeding by backward

induction, I start by describing the ex-post problem for firm n conditional on a vector of

capacities, Cn � tCinu
I
i�1, and location productivities, εn � tεinu

I
i�1, that is

ΠnpCn, εnq � max
qijn¥0

J̧

j�1

βjn

�
I̧

i�1

qijn

�σ�1
σ

�
J̧

j�1

I̧

i�1

τijwi

εin
qijn (7)

s.t
J̧

j�1

τijqijn ¤ Cin @i rνins .

This maximization combines an optimal flow problem, in which a monopolistically-

competitive firm facing an isoelastic demand has to select both the quantity supplied and

the production sources to serve each final market, with a capacity constraint in each poten-

tial source facility. The first term in the profit function corresponds to the sum of revenues

in every market. The second term captures total production costs. For each potential

production location there is a capacity constraint that restricts the amount of goods, inclu-

sive of trade costs, produced in a plant. The variable νin denotes the Lagrange multiplier

associated with the capacity constraint in location i for firm n.

It is worth delving into the role that the variable νin plays. Economically, νin quantifies

14Appendix G.1 provides a simple model with two locations and one market to study its analytical
properties.
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the increase in profits from increasing Cin marginally, i.e., the shadow value of additional

capacity in location i. However, this multiplier also measures the opportunity cost of

producing goods in a plant with a binding capacity constraint since serving a market from

a particular plant potentially takes away useful capacity profitable for serving other markets.

The profit-maximizing price and quantity in market j are given by

pjn �
σ

σ � 1

�
min
i

"
τij

�
wi

εin
� νin


*

, (8)

Qjn � βσjn

�
σ � 1

σ


σ �
min
i

"
τij

�
wi

εin
� νin


*
�σ

. (9)

Firms optimally serve each market from the plant with the cheapest marginal cost. The

cost of supplying a market depends on both the transportation cost and on the marginal

production cost in the source plant. Note that the marginal cost is augmented by νin to

reflect the true cost of producing an additional unit in plant i.15

The ex-ante capacity choice problem of firm n consists on choosing the location and the

capacity of its production plants to maximize expected profits net of investment costs. It

is given by

max
Cin¥0

Eεn rΠnpCn, εnqs �
I̧

i�1

αinCin. (10)

The first term corresponds to the expected operating profits when the vector of capacities

is equal to Cn. The second term denotes the total investment cost of the installed capacity.

From the envelope theorem, the first order condition for the variable Cin is given by

Eεn rνinpCn, εnqs ¤ αin, (11)

with equality if firm n builds a plant in location i. A firm will invest in capacity in location

i until the expected marginal increase in profits due to an increase in capacity equals the

marginal investment cost. In addition, this optimality condition elucidates under which

circumstances the firm does not set up a plant in some location. This occurs if the expected

marginal benefit from investing an infinitesimal amount in location i, with optimal capacities

elsewhere, is strictly smaller than the marginal cost of investment at 0, f 1inp0q ¡ 0. Lastly,

it is easy to see that if a firm invests on capacity in i, it must be the case that there is a

15In this model, it is possible that a market is served by more than one plant. In this case, the marginal
cost of serving that market must be equalized across those plants. The Lagrange multipliers of these plants
adjust in such a way that marginal costs are the same.
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measure of states of the world, in which the capacity constraint for plant i is binding, as

reflected by the fact that the expectation of νin needs to be positive, if Cin ¡ 0.

These first-order conditions help understand the incentives to invest in resilience. When

a flood affects plant i, νin decreases; as the plant becomes less productive, while the multi-

pliers in the unaffected plants weakly increase as their capacity becomes scarcer. When the

probability of disruptions in i rises, events with a smaller value of the multiplier become

more frequent, decreasing the expected marginal returns of investment in i and weakly

increasing them elsewhere. Capacities adjust to restore Condition 11 for all i.

3.5 Solution Strategy

This model requires solving interdependent capacity choices among numerous locations, fur-

ther complicated by a high-dimensional expectation, making it computationally challenging.

However, as I first show, this problem is convex ensuring its numerical tractability.

Proposition 1 The ex-ante capacity choice optimization problem of the firm is a concave

objective function defined on a set of linear constraints.

Proof See Appendix C.1.

Since the problem is convex, any locally optimal point is also globally optimal. Karush-

Kuhn-Tucker (KKT) conditions assure global optimality and enable the use of large-scale

optimizers that converge to the unique global optimum (Boyd and Vandenberghe 2004).

I use S random samples drawn from the probability distribution of εn to approximate

the high-dimensional expectation. By averaging these samples, I compute expected profits

for a specific capacity vector Cn. Precisely,

Eεn rΠnpCn, εnqs �
1

S

Ş

s�1

ΠnpCn, ε
s
nq.

I exploit the convexity and the inherent structure of the firm’s problem to transform it

into an equivalent, efficiently solvable maximization problem. By Propositon 1, this problem

admits strong duality.16 Next, I introduce the dual problem for firm n.17,18

16Strong duality follows from the convexity of the optimization problem and the linearity of the con-
straints. Due to these two properties, Slater’s condition holds which is sufficient for strong duality.

17The study of dual nonlinear programming problems in economics can be traced back to Balinski and
Baumol (1968) which shows that if the primal problem is characterized by diminishing returns, which in
this problem comes from the concavity of the profit function with respect to quantities, the standard dual
properties apply.

18In Appendix C.2, I derive the dual for particular nonlinear capacity cost functions, and provide a
solution algorithm for arbitrary convex capacity cost functions.
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Proposition 2 The dual ex-ante optimization problem of firm n is

min
νins¥0

�
σ�1
σ

�σ�1

σ

Ş

s�1

J̧

j�1

βσjn
S

�
min
i

"
τij

�
wi

εins
� νins


*
1�σ

(12)

s.t
1

S

Ş

s�1

νins ¤ αin rCins @i

Proof See Appendix C.1.

In the dual problem, the vector νn is chosen to minimize the expected economic rents

appropriated by the owner of the firm, consistent with Balinski and Baumol (1968). The

constraints of the problem coincide with Equation 11, and reflect that in the optimum

the marginal benefit of additional capacity must be weakly lower than its marginal cost.

Crucially, the multipliers of each constraint correspond to the optimal values of capacity.

The problem in Proposition 2 is still numerically challenging as it is nonlinear and not

continuously differentiable. However, as I show next, with a change of variables, the problem

can be reformulated into an equivalent convex problem with a linear objective function.

Proposition 3 The dual optimization problem described in Proposition 2 can be written as

the minimization of a linear objective function on a convex set as

min
νins,µjns,tjns¥0

�
σ�1
σ

�σ�1

σ

Ş

s�1

J̧

j�1

βσjn
S
tjns (13)

s.t
Ş

s�1

νins
S

¤ f 1inpCinq @i; µjns ¤ τij

�
wi

εins
� νins



@i, j, s; ptjns, µjns, 1q P P

1
σ
,1� 1

σ
3 @j, s

where P
1
σ
,1� 1

σ
3 denotes a three-dimensional power cone.19

Proof See Appendix C.1.

This reformulation allows me to solve the firm’s problem introduced in Equation 10 very

quickly. The problem in Equation 13 belongs to the class of conic optimization programs, a

nonlinear extension of conventional Linear Programming optimization, that can be solved

in polynomial-time and has a well-developed duality theory (see, e.g., Letchford and Parkes

2018 and MOSEK ApS 2023). State-of-the-art optimizers have streamlined routines that

solve these problems with hundreds of variables and constraints in less than a second.20

19Pα,1�α
3 is a convex set defined as Pα,1�α

3 �
 
x P R3 : xα

1 x
1�α
2 ¥ |x3|, x1, x2 ¥ 0

(
.

20I solve this problem using the optimizer Mosek implemented on Julia through the optimization modeling
language JuMP (see, respectively, MOSEK ApS 2022, Bezanson et al. 2017 and Lubin et al. 2023).
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4 Empirical Results

In this section, I describe, the data used estimating the model, the estimation strategy, and

the parameter estimates and their quantitative implications.

4.1 Structural Estimation Data

I use three types of data. First, I use the car registration dataset described in Section 2.

Since the model is static and the burden of solving it is considerable, I aggregate the data

at an annual level and I use 2019. For each plant, I construct flows to each destination

market.

I complement the car registration data with list price data (MSRPs) in 2018 and 2019 for

China, Brazil, Germany, Mexico, Japan, India and the United States, at the car model level.

To these price data, I merge the location where the car models were produced to estimate

trade costs. I use this dataset to estimate the demand block of the structural model, by

adding bilateral applied tariffs for each pair of countries sourced from ITC (2022), and

standard bilateral gravity measures from CEPII (Mayer and Zignago 2011).

To estimate the model, I need to define the geographical units at which firms make their

choices. Firms’ choices need to be made at subnational units of aggregation, as different

regions within countries are affected in dissimilar ways by climate change. I define these

subnational units using GAUL1 units. The locations included in the estimation of the model

appear in blue in Figure A.3, and correspond to locations with car production in 2019.21

For each location, I collect a number of variables that proxy for the local fundamental

productivity and the local cost of investment in capacity. I source population counts in 2020

for each 1km grid from WorldPop (2021). From Kummu et al. (2018), I retrieve location-

specific estimates of GDP per capita for 2015. I construct measures of road density using

data from Meijer et al. (2018) by averaging highway and primary road density for each

cell. As a proxy for the price of land in each administrative unit, I construct measures

of land availability. by computing the share of undeveloped land, with a slope smaller

than 15%, following Saiz (2010). I obtain information about global land use from Zanaga

et al. (2021). Finally, I use the geographical coordinates of the centroid of each location to

compute bilateral distances to the population-weighted centroid of each country.22

21In the counterfactuals in Section 5, I expand the locations in the firms’ choice set to all the GAUL1
units in the countries for which there are sales. These locations are colored in green in Figure A.3 in the
Appendix.

22I provide more details about the data construction and show maps with the resulting data in Appendix
A.2.2.
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4.2 Econometric Specification and Estimation Strategy

I estimate the model in two steps. First, I estimate trade costs and demand. Second,

I estimate the parameters that govern the productivities and investments costs in each

location and the values of the productivity penalties from experiencing a flood.

4.2.1 Trade Costs

To estimate trade costs, I draw on matched data on prices and the location of production

of models and use Equation 8, the optimal price equation derived from the model.

I interpret differences in prices of specific car models that are produced in the same

plant, and sold in different markets as being driven by trade costs τij .
23 I assume τij �

p1 � tariffijq
ϕtardϕdist

ij , where tariffij denotes car tariffs and dij denotes distance between

locations i and j. The parameters ϕtar and ϕdist are estimated from the regression:

logppijmq � ϕtar logp1� tariffijq � ϕdist log dij � αim � αj � uijm. (14)

The model-plant fixed effect, αim, controls for the unobserved marginal cost for model m in

location i, subsuming the fundamental productivity of the firm, wages, firm-origin specific

shocks, and the multiplier associated to the capacity constraint. The destination-specific

fixed effect αj controls for market-specific measurement error. The estimate of ϕtar is 0.834

(robust S.E equal to 0.075) and for ϕdist � 0.033 (robust S.E equal to 0.004).

4.2.2 Demand Elasticity, Home Market Effects, and Brand-Specific Quality

Consider the demand function described in Equation 3 in logs,

logQjn � �σ log pjn � logRj � pσ � 1q logPj � logψjn � σuijn. (15)

I assume that the demand shifter ψjn is made up of a firm-specific quality term γn and a

home bias component. Thus, logψjn � γn � ϑBrandHomejn.

Given that the data comes at the model level but the relevant elasticity of substitution

from the perspective of the model is across varieties of different firms, I assume a nested

CES demand to collapse models of the same firm into quantity- and price-composites at the

firm level. First, I estimate the following share regression at the model-market level,

log sjmn � p1� σmqpjmn � Pjn � vmjmn. (16)

23See e.g. Anderson and van Wincoop (2004), Atkin and Donaldson (2015) and Donaldson (2018).
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where sjmn is the sales share of model m within brand n in market j, and Pjn is the

ideal price-composite for firm n in market j.24 Then, I use another share regression at the

firm-market level to estimate σ across firms including the demand shifter ψjn,

log sjn � p1� σqPjn � γj � γn � ϑBrandHomejn � vnjn. (17)

In Table D.1, I present the results from estimating Equations 16 and 17. In the preferred

specification, I estimate a demand elasticity across models of the same firm of 4.3 and across

firms of 2.6 and a home market effect of around 1.0. The demand elasticity across models

is quite similar to the one obtained in Head and Mayer (2019), who estimate an elasticity

of 3.9, without price data. The home market effect is in line with Coşar et al. (2016) and

is substantial.25

4.2.3 Market-Specific Shifters

To estimate the component of the firm-market shifters βjn that is specific to market j, which

I denote by δj and captures aggregate expenditure and the price index in that market, I

also use the structural demand equation. However, I need to compute a different regression

than in Equation 17, because I cannot retrieve shifters for all markets due to lack of data

on prices. Instead, I substitute the optimal pricing equation in the demand and estimate:

logQijm � δ1 logp1� tariffijq � δ2 log dij � δim � δj � ϑmsBrandHomebpmqj � γms
npmq � εijm.

(18)

In Figure D.2, I show the estimates of δj . These shifters are the largest in markets with a

large population and high income, e.g. United States or China.

4.2.4 Distributions of Productivities, Capacity Costs and Flood Damages

Given the estimates for trade costs and the demand equations, I use a Simulated Method

of Moments (SMM) estimator to obtain estimates for the determinants of zin and αin. I

cannot use the model’s structural equations to recover them using a saturated regression

24To estimate the elasticity in Equation 16, I use tariffs as an instrument for prices. An instrument
is needed because I assume that prices are observed with measurement error, and because, in this model,
marginal costs are not constant, and therefore, prices are affected by the structural determinants of quantities.

25In Figure D.1, I present correlations of γ̂n with prices, as well as the distribution of shifters by the home
market of the firm. These brand shifters should be interpreted as measures of quality that explain why the
demand for some brands is larger than for others after controlling for prices and home market effects.
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or a model inversion. Therefore, I treat them as structural errors that come from known

parametric distributions, and I estimate the parameters of these distributions.

I assume that both errors follow Log-Normal distributions. Precisely, I assume that

zin and αin are drawn from the distributions F z
inpzinq � logN pX 1

inδ
z � G1

iδ
w, ξzq and

Fα
inpαinq � logN pX 1

inδ
α, ξαq, respectively. Conditional on the vectors Xin and Gi, I as-

sume that these draws are independent across firms and locations. I linearly project the

mean on a vector of observable characteristics that attempt to proxy for fundamental de-

terminants of productivity and investment costs.26 In contrast, I assume that for both

distributions the dispersion parameters ξz and ξα are common across firms and locations.

I use a parsimonious set of observable characteristics contained in vector Xin to model

these distributions. The vector Xin includes a constant, local measures of log gross domestic

product per capita, log population, and log road density, a home market dummy, the

distance between location i and a firms’ country of origin, and a measure of local land

availability. I subsume the vector of wages in each location by adding the term G1
iδ

w, where

Gi are dummy variables that denote whether a particular location belongs to a country in

one of six GDP bins, allowing productivity levels to flexibly vary across groups. Then, I

use the structural model to estimate the parameters δz, δw, δα, ξz and ξα.

I use the Simulated Method of Moments (SMM) to estimate the vector of parameters

Θ � tδz, δα, δw, ξz, ξα, κ1, κ2u following Gourieroux et al. (1993). The estimation procedure

uses the model described in Section 3 as a data generating process that simulates a set of

production and location choices for a set of artificial firms for a candidate parameter vector

Θ̃, and S vectors of simulations draws for the structural errors. These endogenous choices

are translated into moments and averaged out across simulations. Then, the estimator finds

the value of Θ̃ for which the distance between the vector of moments in the data, and their

simulated counterpart when the parameters are equal to Θ̃, is minimized.

Forty-eight empirical moments are chosen as targets for estimation.27 Since the model

is over-identified, variation in all the moments jointly determines all the parameters of the

model. However, different sources of variation in these moments are more informative for

some of the parameters and are associated with the identification of different parameters.

I use three blocks of moments. The first block is geared towards matching the spatial

distribution of plants and production. I define moments that interact Xin and Gi with

log Yin, log production in location i by firm n, and with Din, a binary variable equal to 1 if

26Another option would be to be fully flexible and estimate a mean by location, akin to a fixed effect.
However this would require the estimation of a high-dimensional vector that is computationally infeasible
and that would likely produce noisy estimates given the granular level of the data.

27In Table E.1, I present the explicit equations for the estimation moments.
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firm n has a plant in location i.28

The second group of moments match features of the distributions of firm-level production

and number of plants. I include as moments the average of the logs of the total number of

plants and of total production, as well as the squares of those logarithms. Also, I incorporate

moments that attempt to match various percentiles of the distributions of total production

and total number of plants by firm, and features of their joint distribution. Finally, I include

moments to match the average difference between the production of the largest plant and

the second largest plant across firms with multiple plants and the average production of the

largest plant.

To estimate the flood damage parameters κ1 and κ2, I simulate flood realizations within

the model and I compare a plant’s production with and without floods, holding the funda-

mentals and the capacity fixed. I simulate floods using the definition of 10-year and 100-year

floods, assuming these occur with a 10% and 1% probability, respectively, and match the

model-implied responses to the long-run averages from Figure 2.

4.3 Results of the Structural Estimation

In Table D.2, I show the results of the structural estimation. The standard errors are

computed using the usual formula for simulated method of moments estimators provided

in Gourieroux et al. (1993). In Appendix E.2, I discuss the fit of the model.

Starting from the determinants of the capacity costs, αin, the estimates suggest that in

locations with a larger population, with higher road density, with large GDP per capita,

and with less available land, the expected cost of a unit of capacity is larger. Due to

the expression for the expectation of the Log-Normal distribution, these estimates can be

interpreted as elasticities. An increase of 1% in the population, road density, and GDP

per capita of a location decrease the expected cost of capacity by 0.02%, 0.01% and 0.05%,

respectively. The coefficient on land availability can be interpreted as a semi-elasticity; an

increase in 1 percentage point in the share of available land in a location decreases the

expected cost in 0.12%. I find important home market effects in the cost of capacity. All

else equal, the cost of a unit of capacity in the headquarters country of the firm is 27.7%

smaller than in any other country. This home market effect is amplified by the fact that the

costs of capacity increase, with an elasticity of 0.05%, as locations are farther away from

the headquarters country of the firm.

The expected productivity of a location, zin, increases by 0.03%, 0.03%, 0.07% and

28I discuss the separate identification of the productivity and the capacity cost parameters in Appendix
G.2.
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decreases by 0.052% with a 1% increase in population, road density and GDP per capita,

and with a 1 p.p increase in land availability. Productivity is on average 22.7% larger for

locations within the firms’ home country and I find gravity in productivity; an increase in

distance away from the home market reduces productivity with an elasticity of 0.04%.

I find sizable productivity penalties as a consequence of floods. To rationalize the impact

of floods on car production estimated in Figure 2 through the model, the productivity after

a 100-year flood decreases by approximately 75% and after a 10-year flood by 60%.

It is difficult to gauge the economic implications of the magnitude of these estimates

from the numbers alone. In Figures 4 and 5, I explore the implications of these estimates

for productivities, investment costs and the location of production.

In Figure 4a, I plot the average productivity for each GAUL1 administrative unit in

the sample of U.S firms. I condition on firms from a particular origin as productivities and

capacity costs are partly determined by the home country of each firm. The estimates reveal

that the most productive locations are in the developed world, in places such as the United

States, Canada, and Western Europe, reflecting the prominence of GDP per capita as a

determinant of local car production productivity. However, what matters for production

is how these productivity measurements interact with the estimated costs of labor and the

costs of capacity investment. In Figure 4b, I plot the average marginal cost of production in

each location for American firms. Once one takes into account differences in wages across

locations, the places with the smallest marginal costs are locations such as India, South

America and Mexico. Furthermore, these estimates reveal that home market effects are

very relevant in determining productivities.

In Figure 4c and Figure 4d, I plot the average costs of investing in capacity for American

and German firms, respectively. From these maps, it is clear that home market effects are

important, as the cheapest country for investing for firms from both origins is their origin,

whereas investing in Europe, for the U.S firms, or in the United States, for German firms,

seems very expensive highlighting that these investment costs are increasing in local income.

The map shows that the capacity costs increase in distance to headquarters. For instance,

for U.S firms capacity is cheaper in Mexico than in South America. Likewise, for German

firms, capacity is cheaper in France than in Canada.

Figure 5 presents the geographical distribution of production and of plants as implied

by the model. Ultimately, where firms decide to locate their plants and produce their goods

is a function of three determinants. Due to the existence of trade costs, firms want to be

close to large markets as measured by the firm-specific market shifter βjn, at the same time

that they produce in places that minimize the costs given a level of capacity and the costs
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Figure 4: Implications of Parameter Estimates

(a) Average Productivity - U.S Firms (b) Average Marginal Cost - U.S Firms

(c) Average Costs of Investing in Capacity - U.S
Firms

(d) Average Costs of Investing in Capacity - Ger-
man Firms

Notes: These maps show the values of average productivities and marginal costs for American firms, and average capacity
costs for U.S and Japanese firms respectively. The values are normalized by the location with the largest productivity in
Panel (a), and by the location with the smallest value in the others.
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Figure 5: Model Implied Location of Production and of Plants

(a) Number of Produced Units (b) Number of Plants

Notes: These maps show the number of cars (in thousands) and the number of plants generated by the model across 100
simulations. The locations taken into account correspond to the GAUL1 units where there is car production in 2019.

of building that capacity, and they want to have multiple firms to serve those markets in

such a way that there production is resilient. The model predicts that plants locate mostly

in North America, Central Europe, in particular in Germany and the Northeast of France,

China and Japan. The places in which the model predicts production strikingly resemble

where production takes place in the data. In Figure A.2 in the Appendix, I show the number

of plants and cars produced in the data for 2019.

5 The Effect of Changes in the Probability of Floods on Firm

Organization

In this section, I evaluate how firm-level plant location, number, and capacity decisions

respond to changes in the likelihood of extreme weather events and the implications of these

responses for the industry’s location of production, average productivity, and consumer

prices. The main counterfactual is to modify the probability distribution of extreme weather

events and recompute firms’ choices by combining the estimated structural model with

projected probabilities for extreme precipitation events from climate models.29

29This exercise makes certain assumptions which are consequential for the results. First, I assume the
future production damage from floods, will remain the same as the one based on historical data, disregarding
other potential adaptation mechanisms beyond plant reorganization that could mitigate flood impacts. Sec-
ond, the focus is exclusively on extreme flooding events, abstracting from other climate change effects such
as permanent shifts in average temperature and precipitation that could affect locations heterogeneously,
and other potential climate-change-induced disasters like droughts and wildfires, which might either contrast
or compound with floods.
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5.1 Projected Probabilities of Extreme Weather Events under Climate

Change

I draw upon climate projections from Coupled Intercomparison Project Phase 6 (CMIP6)

models to inform changes in probabilities of a weather disaster in a specific location. These

projections are based on alternative emission scenarios, known as Shared Socioeconomic

Pathways (SSPs), that attempt to capture possible pathways for societal development.30

I define a flood disaster as a five-day rainfall event that exceeds the location-specific

historical thresholds for 10-year and 100-year return periods (which historically occur with

10% and 1% probabilities, respectively). I measure the yearly probability of these events

occurring during 2035-2064 under a specific Shared Socioeconomic Pathway, using projec-

tions from a multi-model ensemble based on CMIP6 protocols. These probabilities come

from the World Bank’s Climate Change Knowledge Portal, provided on a 1o � 1o global

grid and aggregated using a simple average at the GAUL1 level.31

In SSP5-8.5, the average probability in 2050 of a 10-year event becomes 14.6% and

of a 100-year event 1.9% with climate change. However, these probabilities are spatially

heterogeneous due to the differences in geography, topography, and position in the globe

of distinct locations.32 For instance, in SSP5-8.5, the probabilities of a 100-year event

are expected to increase in Tennessee to 2.2%, in Michigan to 2.3%, and in Tokyo to

1.4%, whereas the probability in Tangier, Morocco decreases to 0.8%. In SSP3-7.0, the

probabilities of extreme events in these places are 2.5%, 1.9%, 1.7%, and 0.7%. In Figure 6,

the probabilities for 10-year extreme precipitation events are illustrated in Panel (a), while

100-year events are depicted in Panel (b). These maps reveal significant heterogeneity in

these probabilities. For instance, regions in North Africa, Turkey, and Spain are anticipated

to experience a decrease in the likelihood of extreme precipitation; conversely, in areas in

Central Africa and Southeast Asia, a fivefold increase is projected.

5.2 Baseline Predictions

Table 1 documents how different assumptions on the distribution of climate change shocks

affect the firms’ organization of production. Four patterns emerge. First, as the probability

30See IPCC (2021a) for an exhaustive description of the five main Shared Socioeconomic Pathways. In
this paper, I focus on (1) SSP1-1.9, the low end of future emission, (2) SSP3-7.0, a medium to high range
emissions scenario; and (3) SSP5-8.5, a high-end of emissions and of warming worst-case scenario.

31See World Bank Group, Climate Change Knowledge Portal https://climateknowledgeportal.

worldbank.org/.
32According to the IPCC (2021b), precipitation is projected to increase over high latitudes, the equatorial

Pacific and parts of the monsoon regions. Global warming will intensify the global water cycle and the
severity of precipitation events.
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Figure 6: Extreme Precipitation Probabilities under SSP55-8.5

(a) 10-Year Event (b) 100-Year Event

Notes: These maps show the probability of historical 10-year precipitation events in Panel (a) and 100-year precipitation
events in Panel (b). These projections come from a multimodel ensemble for SSP5-8.5 from the Climate Change Knowledge
Portal of the World Bank. The administrative units in the map correspond to GAUL1 units.

of adverse weather shocks to productivity increases, firms produce in more locations, but the

capacity of these plants shrinks. That is, firms, on average, operate with a larger number of

smaller plants. Comparing the current scenario, where 100-year and 10-year events happen

with probabilities of 1% and 10%, and SSP5-8.5, the average firm increases its number of

plants by 4.4%, but average capacity per plant decreases by 7.2%.

Second, firms shrink. For the average firm, production capacity declines by 4.9% and

profits by 4.1% between the current scenario and SSP5-8.5. In the counterfactual, the

likelihood of an event that reduces productivity increases, and therefore, the expected pro-

ductivity of each location is smaller. Hence, firms expected productivity declines, reducing

their incentives to invest in size. Moreover, firms reallocate production capacity from ex-

ante productive locations to places that are less productive, but give them the option to

hedge. This implies a further decline in size as firms organize production in a more dis-

persed way across space, losing the productivity gains from concentrating production in the

locations that produce at the expected lowest cost.

Third, firms operate with more spare capacity. In a counterfactual world without shocks,

firms operate at full capacity as there are no sources of uncertainty. As climate change

becomes more severe, firms start to hold more spare capacity to accommodate potential

shocks to their other plants. This means that firms invest in resilience, even if most of the

time, this spare capacity is not used. The benefit of expanding production in a plant if

production in an affiliated plant is disrupted outweighs the cost of excess capacity if this

additional capacity is idle or, even worse, if the plant itself suffers an adverse productivity
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event. In SSP5-8.5, firms reserve 7.0% of their total capacity for such hedging purposes.

Table 1: Firms’ Plant Structure over Different Climate Change Scenarios

Extreme Precipitation Probability 0% 1%/10% SSP1-1.9 SSP3-7.0 SSP5-8.5

Average Number of Plants 7.08 6.49 6.63 6.77 6.78
Average Capacity per Firm 513.61 465.52 451.97 446.34 442.92
Average Capacity per Plant 205.02 152.93 149.17 141.27 141.91

Average Profits 9258.91 8546.81 8259.24 8264.50 8214.25
Percentage Change 8.1% 0.0% -3.57% -3.51% -4.09%
% Negative Profits 0.00% 0.42% 0.66% 0.52% 0.55%

Average Used Capacity 100.0% 95.3% 93.7% 93.4% 93.0%
Average Capacity HHI 1.000 0.882 0.852 0.833 0.825
Average Production HHI 1.000 0.884 0.855 0.835 0.828

Notes: This table shows different statistics about the firms’ plant organization over different climate scenarios. For
each column, I am assuming firms make their capacity choices assuming different probabilities for extreme weather
events, and that those events are generated according to those probabilities. In the first column, extreme events do
not happen. In the second column, 10-year events happen with a 10% probability and 100-year events happen with a
1% probability. This is the baseline scenario used to estimate the model. In columns 3 to 5, extreme weather event
probabilities correspond to those in SSP1-1.9, SSP3-7.0 and SSP5-8.5, respectively. Statistics about capacity are in
thousands of cars. Statistics about profits and investment are in millions of dollars.

Finally, both capacity and production become less spatially concentrated as measured

by the HHI. This follows directly from the fact that firms are spreading their plants and

their production capacity in space in order to diversify against the extreme weather shocks.

In Table 2, I explore the extent to which the reconfiguration of the firms’ production

structure is an effective as adaptation mechanism to negative shocks. To do this, I compare

profits when firms reorganize their plants in reaction to a change in the probability of these

shocks, with profits in a case in which shocks occur according to the new probabilities, but

firms’ choices are held fixed to the ones before climate change. I find that under different

climate scenarios, adaptation substantially reduces the decline in profits caused by climate

change. For instance, the profits of the average firm decline by 4.1% between the current

risk landscape and SSP5-8.5 when firms optimally adapt. However, when the probabilities

of floods change but firms do not adapt, the corresponding decline in profits is of 5.3%.

That is, adaptation reduces the loss in profits due to climate change by around 20%. This

finding is consistent for the most severe climate change scenarios.

The implications of firms’ plant reorganization in SSP5-8.5 for the spatial allocation of

automobile production are heterogeneous across countries as shown in Figure 7a. Globally,

production declines by 6.6%. In most countries, production declines; however, there is a

group of countries, such as Morocco, Egypt, South Africa, Italy, and Mexico, that experience

an increase in the number of cars produced. Most of the reallocation of production takes
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Table 2: Effects of Adaptation on Profits

Extreme Precipitation Probability 0% 1%/10% SSP1-1.9 SSP3-7.0 SSP5-8.5

Average Profits with Adaptation 9258.91 8546.81 8259.24 8264.50 8214.25

Relative to 1%/10%
Decrease in Profits with Adaptation -3.6% -3.5% -4.1%

Average Profits without Adaptation 8255.08 8175.54 8110.10
Decrease in Profits without Adaptation -3.6% -4.5% -5.3%
Losses from not adapting -0.1% -1.1% -1.3%
Share of Losses Averted 1.4% 22.9% 22.9%

Notes: This table shows different statistics about firms’ profits with and without adaptation over different climate scenarios.
In the first row, I compute profits when firms adapt by choosing plant locations and capacities according to the probabilities
for extreme weather events in the column. I compute profits when I hold fixed the capacity choices that are optimal when
weather events happen with 1%/10% probability, but the events are generated with the probability corresponding to the
column.

place within countries and trading blocs.

In Figure D.3, I present changes in production shares within a country for the largest 10

producers. Take the United States as an example. In Figure 7a, we see that production in

the United States exhibits a considerable decline of 7%. Nonetheless, as Figures 7b and D.3

show, this decline in production is mostly driven by changes in the location of production

within the US; production is moving from very productive regions in the Southeast, the

Midwest and the Great Lakes (e.g. Michigan and Tennessee), for which extreme precipation

probabilities are increasing considerably, to locations in the Great Plains (e.g. Nebraska

and Kansas) that are less productive. These stark reallocation patterns appear within other

countries as well. For instance, as shown in Figures 7b and D.3 in Germany, Spain and

France, there is a reallocation of production towards the Southern part of these countries,

in China, production reallocates from the more tropical south to the North, and in India,

production reallocates towards the Center.

The impacts of climate change on production are mimicked by changes in total capacity,

as seen in Figure 8a. Total global capacity shrinks by 4.9%. Firms shrink capacity in

countries that become more affected by climate change and expand capacity in countries

that are less affected. However, this adaptation mechanism interacts with market access in

subtle ways as firms do not substitute locations without considering how the new potential

sites impact their market access. Most of these substitutions take place between locations

that are close to each other.

Figure 9a exhibits the impact of climate change on car price indices in each country.

Following the model in Section 3, increases in price indices are sufficient statistics for the
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Figure 7: Log Change in Production for SSP5-8.5

(a) Country Production
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(b) GAUL1 Production

Notes: These maps show log changes in the number of cars produced between the current risk landscape, where 10-year
floods occur with 10% probability and 100-year floods have a 1% probability, and the projected probabilities for SSP5-8.5,
at the country-level in Panel (a) and at the GAUL1-level in Panel (b). Quantities are averaged across 100 simulations of the
structural errors. The estimates used to simulate the model are in Table D.2. The probability projections used come from
a multimodel ensemble for SSP5-8.5 from the Climate Change Knowledge Portal of the World Bank. The administrative
units in the map correspond to GAUL1 units.

Figure 8: Log Change in Capacity for SSP5-8.5

(a) Country Capacity
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(b) GAUL1 Capacity

Notes: These maps show log changes in capacity between the current risk landscape, where 10-year floods occur with 10%
probability and 100-year floods have a 1% probability, and the projected probabilities for SSP5-8.5, at the country-level
in Panel (a) and at the GAUL1-level in Panel (b). Capacities are averaged across 100 simulations of the structural errors.
The estimates used to simulate the model are in Table D.2. The probability projections used come from a multimodel
ensemble for SSP5-8.5 from the Climate Change Knowledge Portal of the World Bank. The administrative units in the
map correspond to GAUL1 units.
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change in consumer surplus derived from automobile consumption. In this map, I plot

the log change in the price index in the baseline relative to the price index when extreme

weather event probabilities in SSP5-8.5. Industry price indices increase in all countries; for

the average country, the rise is 2.6%, but there is heterogeneity across different markets.

These price indices increase for three reasons. First, since the main counterfactual

essentially constitutes a negative productivity shock becoming more likely, firms shrink in

size. This reduces the number of cars that people can consume. Second, firms relocate

their production sites from locations that are ex-ante optimal to places that are ex-ante

suboptimal causing a decline in productivity. Third, the greater frequency of disasters

exacerbates the decline in expected productivity, which in turn results in higher consumer

prices.

Figure 9: Log Change in the Price Index for SSP5-8.5

(a) With Firm-Level Adaptation
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Notes: These maps show log changes in price indices defined by the formula in Equation 4 between the current risk landscape,
where 10-year floods occur with 10% probability and 100-year floods have a 1% probability, and the projected probabilities
for SSP5-8.5, when firms adapt to the new extreme precipitation probabilities in Panel (a) and when firms’ choices are
fixed to the ones in the baseline in Panel (b). Price indices are averaged across 100 simulations of the structural errors.
The estimates used to simulate the model are in Table D.2. The probability projections used come from a multimodel
ensemble for SSP5-8.5 from the Climate Change Knowledge Portal of the World Bank. The administrative units in the
map correspond to GAUL1 units.

The fact that production is becoming more costly can be seen in Figure 10. In Panel

(a), I show the average increase in marginal costs by country. In most countries, production

costs increase. In fact, the average marginal cost, weighted by quantities produced, changes

by 7.4%. Nonetheless, in some countries there is a decrease in costs mostly driven by the

reallocation of productive firms to locations within those countries. In Panel (b), I show

the change in average costs of capacity. On aggregate, capacity costs barely change.

In Figure 11, I decompose the increase in price indices into two components. The

first component corresponds to the indirect productivity loss caused by the reallocation of
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Figure 10: Log Change in Marginal Costs and Capacity Costs in SSP5-8.5

(a) Production Costs
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(b) Capacity Costs
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Notes: These maps show log changes in marginal production costs in Panel (a) and capacity costs in Panel (b) between
the current risk landscape, where 10-year floods occur with 10% probability and 100-year floods have a 1% probability,
and the projected probabilities for SSP5-8.5. In both cases, the country average is constructed as an average across the
locations within the country weighted by the quantities produced in each location. Costs are also averaged across 100
simulations of the structural errors. The estimates used to simulate the model are in Table D.2. The probability projections
used come from a multimodel ensemble for SSP5-8.5 from the Climate Change Knowledge Portal of the World Bank. The
administrative units in the map correspond to GAUL1 units.

production to ex-ante suboptimal locations and the reduction in capacity. The second term

corresponds to the direct effect of weather disasters on productivity. I use the following

decomposition,
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where P
1

j corresponds to the price index in country j after both the shocks become more

likely and the plant configurations adapted as a result of the shock to the expectations, P o
j

is the value of the price index in country j at the baseline and P
1,ns
j is the ideal price index

in country j when the firms’ production organization has been adjusted in response to the

change in probabilities, but the frequency of weather events are held at the baseline values.

The first term corresponds to the effect of the change in the production structure and the

second term to the effects of the shocks, conditional on the plant configuration. As seen in

these figures, the main driver of the increase in price indices is the firm-level responses to

climate change, rather than the direct impact of the weather shocks.

Finally, I evaluate the effect of firm adaptation on the surplus that consumers derive

from the automotive industry. From comparing Figures 9a with 9b, it is clear that prices

indices are higher, and the negative effect on consumer surplus is larger, when firms opti-
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Figure 11: Decomposing the Effect in Consumer Prices
(Log Change)

(a) Indirect Effect of Reorganization
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(b) Direct Effect of Weather Disasters
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Notes: These maps show a decomposition of log changes in the price indices defined by the formula in Equation 4 between
the current risk landscape, where 10-year floods occur with 10% probability and 100-year floods have a 1% probability,
and the projected probabilities for SSP5-8.5, in an indirect effect coming from the spatial reorganization of production in
Panel (a) and a direct effect of weather disruptions in Panel (b). Price indices are averaged across 100 simulations of the
structural errors. The estimates used to simulate the model are in Table D.2. The probability projections used come from
a multimodel ensemble for SSP5-8.5 from the Climate Change Knowledge Portal of the World Bank. The administrative
units in the map correspond to GAUL1 units.

mally respond to climate change than when they do not.33 Thus, in this model, firm-level

responses to climate change make consumers worse off. The reason for this is that, from the

consumers’ perspective, productivity shocks to individual firms are not very costly. There

are many varieties and when the price of an individual variety increases due to an idiosyn-

cratic disruption, consumers can substitute away to other products without generating a big

impact on their welfare. This acts as a very efficient insurance mechanism for consumers.

In contrast, firms have an inefficient technology to insure against weather shocks. Firms, on

average, have a handful of plants, and creating new plants is costly. A disruption to one of

these plants affects their surplus massively. When firms reallocate, aggregate productivity

declines considerably as shown in Figure 11. From the perspective of the consumers, the

relocation of plants across space is an aggregate shock. With firm-level adaptation, all va-

rieties become, on average, more expensive due to the losses in productivity and capacity.

This translates to an aggregate increase in automobile prices for consumers.

33In fact, a back-of-the-envelope calculation in which I convert these changes in the price indices to dollar
values, suggest a decline of 2,489M in aggregate consumer surplus when firms adapt, but a 915M decline
when firms do not adapt. Adding these numbers with the aggregate change in profits, these calculations
suggest that total welfare decline by 52,751M when firms adapt, and by 66,858M when firms do not adapt.
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5.3 Robustness

I evaluate the sensitivity of the results presented above to alternative values for the impact

of floods on car production, and to allowing for spatial correlation in the realization of those

floods. In Table 3, I reproduce the main results in Tables 1 and 2 for different values of κ1

and κ2, and for different spatial correlation patterns, which are modeled as a function of

the distance between two locations with an exponential decay.

In Columns (4) to (7), I consider different values of κ1 and κ2. I compare the baseline

results to two alternative values for the productivity decline caused by floods. In the first

case, floods are twice more damaging than estimated; 10-year floods decrease productivity

by 80% and 100-year floods by 90%. In the second case, floods are half as damaging,

meaning that 10-year floods decrease productivity by 20% and 100-year floods by 65%. As

floods become less damaging, firms have fewer incentives to create more plants and spread

out their production to gain resiliency at the expense of productivity. For large weather

disasters, the productivity decline is such that firms need to build additional plants to

reallocate the affected production. These results also reflect that investments in other types

of technologies that reduce the local impact of disasters might be beneficial in addressing

the effects of climate change.

Table 3: Firms’ Plant Structure and Adaptation - Robustness

Extreme Precipitation Probability 1%/10% SSP5-8.5 1%/10% SSP5-8.5 1%/10% SSP5-8.5 1%/10% SSP5-8.5 1%/10% SSP5-8.5

Modification Baseline κ1 � 0.11, κ2 � 0.21 κ1 � 0.44, κ2 � 0.83 λ � 0.1 λ � 0.02

Average Locations 6.49 6.78 6.33 6.62 6.53 6.42 6.52 6.78 6.38 6.60
Average Capacity per Firm 465.52 442.92 472.33 452.94 496.97 487.30 462.57 439.29 462.23 437.82
Average Capacity per Plant 152.93 141.91 128.89 116.60 193.06 185.64 147.37 132.58 155.80 135.76

Average Profits 8564.81 8214.25 8442.87 8054.86 9053.46 8934.81 8527.50 8177.72 8391.28 8160.24
Percentage Change in Profits -4.09% -4.60% -1.31% -4.10% -2.75%

Average Used Capacity 95.3% 93.0% 92.9% 89.2% 99.6% 99.3% 95.3% 93.2% 94.9% 93.1%

Share of Losses Averted with Adaptation 22.9% 27.3% 9.4% 23.6% 49.91%

Notes: This table computes selected statistics from Tables 1 and 2 with different productivity penalties and correlation
structures. Columns (2) and (3) correspond to the baseline results to facilitate comparison. Columns (4) and
(5) consider cases in which the productivity declines are larger. Columns (6) and (7) consider cases in which the
productivity declines are smaller. Columns (8)-(11) consider two cases in which the spatial correlation in the shocks
decays at different rates. Simulation draws are held constant across exercises. The differences solely come from
differences in the parameters.

In Columns (8) to (11), I allow for spatial correlation in the realization of extreme

weather events. I explore two scenarios, one in which the decay is high, so that the cor-

relation between two locations 300km apart is 0.05 and 1300km away are 0.05 and 0.00,

respectively. On the other, the decay is slow, with the correlation for places 300km apart

equaling 0.55 and 1300km apart being 0.07.34 The findings suggest that the incentives

34I provide additional details in Appendix F.1.
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to adapt the firm’s spatial production organization are larger when the potential extreme

weather events are spatially correlated.

6 Conclusion

This paper examines how firms adjust to increasing disruptive weather risks due to climate

change, focusing on their spatial organization of production through changes in their plants’

location, number, and capacity. Using historical data, I document that severe floods signif-

icantly disrupt car production in nearby plants. Firms offset part of the output decline by

ramping up production at other plants within their network. A model is developed to repre-

sent how firms determine their plant locations and capacities, conditional on weather-related

disruption risk. I estimate it to match the current car production geography and combine

it with climate model projections to simulate counterfactuals where different probabilities

of extreme weather events affect the spatial distribution of production.

In the counterfactual analysis, I show that firms build more, albeit smaller, plants in

response to climate change. These plants also maintain a larger spare capacity to buffer

against weather-induced disruptions. Such adjustments reduce the impact of climate change

on firms, decreasing profit losses by one-fifth. However, adaptation adversely affects con-

sumer surplus as plant reconfiguration increases average prices due to productivity and

capacity losses. This finding provides a cautionary note for policies incentivizing resilience

and managing disruption risks.

Finally, the methodological tools developed in this paper can be adapted to investigate

other uncertainty sources such as trade wars, transportation disruption-induced trade costs,

labor strike-induced wage changes, or country-specific regulation impacts on multinational

activity. Furthermore, the optimization approach can be beneficial in alternative contexts

like international trade models with increasing marginal costs or supply chains, and optimal

infrastructure models.
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ONLINE APPENDIX

A Anecdotal Evidence

A.1 Anecdotal Evidence of Weather Disruptions to Car Production

1. Hurricane Ian forces Mercedes, Volvo to shutter S.C. plants after blasting Florida, Automotive News,

September 29, 2022

2. Typhoon Hinnamoor halts production in Japan and South Korea, Automotive Logistics, September

06, 2022

3. Factory closures extended in China as drought continues, Automotive Logistics, August 17, 2022

4. Heavy rains hit Toyota production in Japan, Automotive Logistics, August 02, 2022

5. Floods hit auto production and supply in South Africa, Automotive Logistics, May 30, 2022

6. Drowned vehicles, stuck workers: Jeep, Ford plants halted amid Detroit flooding, Detroit Free Press,

June 30, 2021

7. Texas winter storm blackouts hit automotive sector, Automotive Logistics, February 22, 2022

8. GM to reopen Corvette plant after Ky. tornado, Automotive News, December 17, 2021

9. US tornado damage hits production and logistics, Automotive Logistics, December 13, 2021

10. Typhoon forces Subaru to halt production at Gunma, Automotive Logistics, October 22, 2019

11. Subaru halts production for 10 days after Typhoon Hagibis, Nikkei Asia, October 17, 2019

12. Auto industry still assessing impact of hurricane, Automotive Logistics, September 19, 2018

13. Mazda loses 44,000 units of output in Japan due to torrential rains, Automotive News Europe, Septem-

ber 21, 2018

14. Auto Industry anticipates production losses ahead of Hurricane Florence, Freight Waves, September

12, 2018

15. Japanese carmakers count the cost of natural disasters, Automotive Logistics, September 11, 2018

16. Toyota shuts South African plant after ‘significant damage’ from flooding, Automotive Logistics, Oc-

tober 11, 2017

17. Storm damage halts Toyota production in Durban, Motorpress, October 10, 2017

18. Hyundai and Kia Are Temporarily Closing Plants in Path of Irma, The Drive, September 11, 2017

19. OEMs and logistics providers assess damage from Hurricane Harvey, The Drive, September 4, 2017

20. FCA Minivan Production resumes as in Ontario as flood water recedes, The Drive, August 29, 2017

21. Limited damage to vehicles after surprise hailstorm in Valencia, Automotive Logistics, December 12,

2017

22. Audi using emergency measures to deal with floods at Neckarsulm, Automotive Logistics, June 1, 2016

23. Audi production in Germany hit by flooding, Automotive News Europe, May 30, 2016

24. Storm halts Toyota production in Texas, Automotive Logistics, May 19, 2016
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25. Renewed flooding hits carmakers in India, Automotive Logistics, December 2, 2015

26. Hyundai, Ford, Renault suspend operations in Chennai due to floods, Economic Times, December 02,

2015

27. Flooding in Chennai causes plant closures and supply disruption, Automotive Logistics, November 18,

2015

28. Detroit, Which Now Looks More Like Venice, Is So Flooded That Factories Have Been Affected,

Bangshift.com, August 13, 2014

29. Porsche stops Cayenne and Panamera production as floods hit supplies, Automotive News, July 6,

2013

30. Thai floods affect Honda’s Global Output, Automotive Logistics, November 1, 2011

31. Thailand floods stall automakers, CNN Money, October 28, 2011

32. Tornado Damage Closes Mercedes-Benz Alabama Plant, Motortrend, April 28, 2011

33. Guangzhou Honda’s engine supplier hit hard by floods, Automotive News, June 18, 2008

34. Heatwave forces PSA Peugeot Citroen to trim output, Automotive News, August 12, 2003

35. Fiat says Feb Italy Mkt Share 27.5 pct after Floods, Wards Auto, March 03, 2003

36. Flooding Forces PSA to Shut 5 Plants, Automotive News, February 6, 1995
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Figure A.1: The impact of flooding in Honda’s Celaya plant

(a) Honda’s Celaya Plant after Flood (b) Location of Honda’s Plants in Mexico

CelayaEl Salto

(c) Production in Celaya Plant
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(d) Production in El Salto Plant
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Notes: The source of the photograph in Panel (a) is Automotive News. It shows the flooded Honda plant
in Celaya, Mexico. Panel (b) shows a map of Mexico with the location of Honda’s plants. Panels (c) and
(d) shows production in the Celaya and El Salto plants around the flooding event.
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A.2 Data Appendix

A.2.1 Global Car Data

Figure A.2: Data - Location of Production and of Plants

(a) Number of Produced Units (b) Number of Plants

Notes: These maps show the number of cars (in thousands) and the number of plants in 2019. The locations taken into
account correspond to the GAUL1 units where there is car production in 2019.

Figure A.3: Locations Included in the Estimation

Notes: Regions in blue are included in the estimation of the model. These are the regions where at least one
plant is located in 2019 in the car registration dataset. Additionally, regions in green are included in the
counterfactuals of the model. These are regions in the countries with sales in the car registration dataset.
The other regions are not included in either the estimation or the counterfactuals. The administrative units
correspond to GAUL1 units.
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A.2.2 Location-Specific Variables

Local Population

I source population counts in 2020 for each 1km grid from the WorldPop project (World-

Pop 2021).35 The high-resolution projections of the distribution of population around the

world follow the methods presented in Lloyd et al. (2019). I convert the population counts

for 1km grids to population counts at the GAUL1 level, by adding up the grids within the

borders of each unit. For grids located in multiple GAUL1 units, population counts are

apportioned proportionately.

Figure A.4: Local Population (in logs)

(a) All (b) Locations in Counterfactual

Local Road Density

I construct measures of local road density using data from Meijer et al. (2018).36 This

dataset provides information of global and regional vector datasets in shapefile format, and

global raster datasets of road density at a 5 arcminutes resolution. The dataset contains

information for different types of roads. To construct my measure of road density, I compute

the share of grids that contain primary roads or highways within a GAUL1 unit and compute

the simple average.

Local Gross Domestic Product per Capita in PPP

I construct measures of local GDP per capita using data from Kummu et al. (2018).37

This dataset provides estimates of gross domestic product based on purchasing power parity

at a 5 arc-min resolution for 2015. For each GAUL1 unit, I aggregate these estimates to get

35This dataset can be downloaded in https://hub.worldpop.org/geodata/listing?id=64.
36This dataset can be downloaded in https://www.globio.info/download-grip-dataset.
37This dataset can be downloaded in https://datadryad.org/stash/dataset/doi:10.5061/dryad.

dk1j0.
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Figure A.5: Local Road Density (in logs)

(a) All (b) Locations in Counterfactual

a value for gross domestic production at the GAUL1 level. Then, I divide by the GAUL1

population counts to get a measure of GDP per capita.

Figure A.6: Local Gross Domestic Product per Capita in PPP (in logs)

(a) All (b) Locations in Counterfactual

Local Land Availability

I define land availability in a given region as the share of undeveloped land, i.e., excluding

buildings, croplands, marshes, glaciers, and deserts, with a slope smaller than 15%. I obtain

information about global land use from the WorldCover project of the European Space

Agency (Zanaga et al. 2021).38 For each 10m by 10m pixel, I compute two variables. First,

I compute its slope. Second, I compute whether the land is occupied by a building or a

permanent crop, or by deserts, marshes or glaciers. For each GAUL1 unit, I compute the

share of pixels that have buildable land.

38This dataset can be downloaded in https://worldcover2020.esa.int/download.
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Figure A.7: Local Land Availability (in Shares)

(a) All (b) Locations in Counterfactual
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B Additional Reduced Form Exercises

Figure B.1: The Impact of Severe Floods on the Extensive Margin of Plant Location

(a) Probability of Operating
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(b) Number of Plants in GAUL2
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Notes: In these plots, the y-axis shows the values of Equation 1 for the outcome Log Plant Production for 0 to 40 quarters
after the plant was flooded for the first time in Panel (a) and Log Number of Plants in a GAUL2 location for 0 to 40 quarters
after the location experienced a flood for the first time. The pre-trend estimates are computed using long-difference placebo
estimators. The sample comprises production plants that were active in did not experience any flooding events on the
20 quarters before the first period in the sample. Standard errors are clustered at the GAUL1 administrative level and
computed with 100 bootstrap replications. The circles correspond to the point estimate, the bars correspond to 95%
confidence intervals and the colors of the circle mean significant at 5%, at 10%, not significant at 10%.

Figure B.2: The Impact of Severe Floods on Car Production - Controlling for Spillovers

(a) All Floods
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(b) 100-year Floods

Long Run Average:  -0.69
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(c) 10-year Floods
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Notes: In these plots, the y-axis shows the values of Equation 1 for the outcome Log Plant Production for 0 to 40 quarters
after the plant was flooded for the first time. I account for potential spillovers between plants of the same firm by using the
modification proposed in Section 4 of de Chaisemartin and D’Haultfoeuille (2022b). The pre-trend estimates are computed
using long-difference placebo estimators. The sample comprises production plants that produce 50 units or more during all
the quarters between 2000-2019 and did not experience any flooding events on the 20 quarters before the first period in the
sample. Standard errors are clustered at the GAUL1 administrative level and computed with 100 bootstrap replications.
The circles correspond to the point estimate, the bars correspond to 95% confidence intervals and the colors of the circle
mean significant at 5%, at 10%, not significant at 10%.
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Figure B.3: The Impact of 100-year Floods on Car Production - Alternative Thresholds

Panel A: All Floods
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(b) 50 km
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(c) 75 km
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(d) 100 km
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Long Run Average:  -0.17
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Panel B: 100-Year Floods
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Long Run Average:  -0.35
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(i) 75 km

Long Run Average:  -0.69
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(j) 100 km

Long Run Average:  -0.69
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(k) 150 km

Long Run Average:  -0.46
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(l) 200 km

Long Run Average:  -0.42

-2

-1.75

-1.5

-1.25

-1

-.75

-.5

-.25

0

.25

.5

-12 -8 -4 0 4 8 12 16 20 24 28 32 36 40

Relative time to period where treatment first changes (t=0)

DID from last period before treatment changes (t=-1) to t

Notes: In these plots, the y-axis shows the values of Equation 1 for the outcome Log Plant Production for 0 to 40 quarters
after the plant was flooded for the first time. The pre-trend estimates are computed using long-difference placebo estimators.
Floods are defined using different distance thresholds. The sample comprises production plants that produce 50 units or
more during all the quarters between 2000-2019 and did not experience any flooding events on the 20 quarters before the first
period in the sample. Standard errors are clustered at the GAUL1 administrative level and computed with 100 bootstrap
replications. The circles correspond to the point estimate, the bars correspond to 95% confidence intervals and the colors
of the circle mean significant at 5%, at 10%, not significant at 10%.
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C Additional Model Details

C.1 Proofs

Proposition 1 The ex-ante capacity choice optimization problem of the firm is a concave

objective function defined on a set of linear constraints.

Proof Since the capacity investment cost functions are convex and the constraints are con-

ventional (linear) non-negativity constraints, it suffices to show that the expected operating

profits function Eεn rΠnpCn, εnqs is concave in the vector C. The expectation operator

preserves the concavity of ΠnpCn, εnq which is the only thing required to prove.

Let C 1,C2 P RI
�, pick an arbitrary vector of productivities ε P RI

� and θ P p0, 1q.

Define a function fpqq �
°J

j�1 βjn

�°I
i�1 qij

	σ�1
σ

�
°J

j�1

°I
i�1

τijwi

εin
qij and a convex set

DpCq �
!
qij :

°J
j�1 τijqij ¤ Ci, @i P I, j P J

)
. Notice that the function fpqq is concave.

Let q1 � argmaxqPDpC1q fpqq and q
2 � argmaxqPDpC2q fpqq. Then,

ΠpθC 1 � p1� θqC2, εq � max
qPDpθC1�p1�θqC2q

fpqq ¥

fpθq1 � p1� θqq2q ¥

θfpq1q � p1� θqfpq2q

�θΠpC 1, εq � p1� θqΠpC2, εq�

Proposition 2 The dual ex-ante optimization problem of firm n is

min
νins¥0

�
σ�1
σ

�σ�1

σ

Ş

s�1

J̧

j�1

βσjn
S

�
min
i

"
τij

�
wi

εins
� νins


*
1�σ

s.t
1

S

Ş

s�1

νins ¤ αin rCins @i

Proof Consider the following optimization problem,

max
qijns,Cin¥0

1

S

Ş

s�1

�
� J̧

j�1

βjn

�
I̧

i�1

qijns

�σ�1
σ

�
I̧

i�1

J̧

j�1

wi

εins
τijqijns

�
��

I̧

i�1

αinCin

s.t
1

S

J̧

j�1

τijqijns ¤
1

S
Cin @i, s r νins s .
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Start from the Lagrangian function of the Problem described above,

L �
1

S

�
� J̧

j�1

βjn

�
I̧

i�1

qijns

�σ�1
σ

�
J̧

j�1

I̧

i�1

τijwi

εins
qijns

�
� I̧

i�1

αinCin �
1

S

I̧

i�1

Ş

s�1

νins

�
J̧

j�1

τijqijns � Cin

�
.

From the definition of the dual function,

Dpνnq � max
qijn,Cin¥0

1

S

�
� J̧

j�1

βjn

�
I̧

i�1

qijn

�σ�1
σ

�
J̧

j�1

I̧

i�1

τij

�
wi

εin
� νins



qijn

�
� I̧

i�1

Cin

�
1

S

Ş

s�1

νins � αin

�
.

The first order condition for an arbitrary qijns is given by

σ � 1

σ
βjn

�
I̧

i�1

qijns

�� 1
σ

� τij

�
wi

εins
� νins



¤ 0

Likewise, the first order condition for Cis is

1

S

Ş

s�1

νins � αin ¤ 0.

Then, one can write the dual problem based on Wolfe (1961), as

min
νins¥0

1

S

�
σ�1
σ

�σ�1

σ

Ş

s�1

�
� J̧

j�1

βjn

�
I̧

i�1

qijns

�σ�1
σ

�
J̧

j�1

I̧

i�1

τij

�
wi

εins
� νins



qijns

�
�

s.t
σ � 1

σ
βjn

�
I̧

i�1

qijns

�� 1
σ

� τij

�
wi

εins
� νins



¤ 0 @i, j, s

1

S

Ş

s�1

νins ¤ αin @i

This dual optimization problem can be further simplified by introducing the first group of

constraints in the objective function. From the first order conditions for qijns, it must be

that

Qjns �

�
I̧

i�1

qijns

�
� βσjn

�
σ � 1

σ


σ �
min
i

"
τij

�
wi

εins
� νins


*
�σ

,
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but also, these imply that

J̧

j�1

I̧

i�1

τij

�
wi

εins
� νins



qijns �

J̧

j�1

I̧

i�1

σ � 1

σ
βjnQ

� 1
σ

jnsqijns �
J̧

j�1

σ � 1

σ
βjnQ

� 1
σ

jn

I̧

i�1

qijnslooomooon
Qjns

Then, replacing this in the dual function, the dual problem of the firm n is given by

min
νins¥0

�
σ�1
σ

�σ�1

σ

Ş

s�1

J̧

j�1

βσjn
S

�
min
i

"
τij

�
wi

εins
� νins


*
1�σ

s.t
1

S

Ş

s�1

νins ¤ αin rCis @i

Proposition 3 The dual optimization problem described in Proposition 2 can be written as

the minimization of a linear objective function on a convex set as

min
νins,µjns,tjns¥0

�
σ�1
σ

�σ�1

σ

Ş

s�1

J̧

j�1

βσjn
S
tjns

s.t
Ş

s�1

νins
S

¤ f 1inpCinq @i; µjns ¤ τij

�
wi

εins
� νins



@i, j, s; ptjns, µjns, 1q P P

1
σ
,1� 1

σ
3 @j, s

Proof Starting from the problem in Proposition 2, substitute mini

!
τij

�
wi
εins

� νins

	)
for

a new variable µjs for all j P J and s P S and add constraints for all i, j and s such that

µjns ¤ τij

�
wi
εins

� νins

	
. The problem becomes

min
νins,µjns¥0

�
σ�1
σ

�σ�1

σ

Ş

s�1

J̧

j�1

βσjn
S
µ1�σ
jns

s.t
1

S

Ş

s�1

νins ¤ αin @i , µjns ¤ τij

�
wi

εins
� νins



@i, j, s

To make the problem linear, notice that one can substitute µ1�σ
jns for tjns and add power

cones as constraints. A three-dimensional power cone is defined as

Pα,1�α
3 �

 
x P R3 : xα1x

1�α
2 ¥ |x3|, x1, x2 ¥ 0

(
.

I substitute the nonlinear term µ1�σ
jns for a new auxiliary variable tjns such that tjn ¥ µ1�σ

jn .

This step consists on writing the problem in the equivalent epigraph form (see Boyd and
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Vandenberghe 2004). This nonlinear inequality condition can be formalized using a three-

dimensional cone, ptjns, µjns, 1q P P
1
σ
,1� 1

σ
3 . In the optimum, these two variables will coincide

since minimizing the objective function involves choosing the smallest tjns or the largest µjns

possible. Then, the problem is

min
νins,µjns,tjns¥0

�
σ�1
σ

�σ�1

σ

Ş

s�1

J̧

j�1

βσjn
S
tjns

s.t
1

S

Ş

s�1

νins ¤ αin @i , µjns ¤ τij

�
wi

εins
� νins



@i, j, s , ptjns, µjns, 1q P P

1
σ
,1� 1

σ
3 @j, s

It is easy to see that the objective function is a linear function of tjns, and that the first

and second set of constraints are linear and, thus, convex. It is remaining to show that

power conic constraints are also convex.

Consider pto, µo, 1q P P
1
σ
,1� 1

σ
3 and pt1, µ1, 1q P P

1
σ
,1� 1

σ
3 , showing that the convexity of

these sets amounts to showing that pλto � p1� λqt1, λµo � p1� λqµ1, 1q P P
1
σ
,1� 1

σ
3 ,

λto � p1� λqt1 ¥ pλµoq1�σ � pp1� λqµ1q1�σ

¥
�
λµo � p1� λqµ1

�1�σ

where the first inequality follows from the definition of power cone and the second inequality

from the fact that fpxq � x1�σ is convex for x ¥ 0. �

C.2 Alternative Capacity Cost Functions

Consider the problem outlined in Expression 10 replacing the linear investment cost function

with a cost function finpCinq (with the three conditions specified in Subsection 3.3),

max
Cin¥0

Eεn rΠnpCn, εnqs �
I̧

i�1

finpCinq.

In this Appendix, I derive the dual for two other specifications of the capacity cost func-

tion: a second-degree polynomial, and an exponential function. Then, I provide a solution

algorithm for a generic convex investment cost function.

Second-Degree Polynomial: consider the following cost function, finpCinq � ainCin�

binC
2
in, with ain, bin ¡ 0. The dual of this problem can be written as,

min
νins,γin¥0

�
σ�1
σ

�σ�1

σ

Ş

s�1

J̧

j�1

βσ
jn

S

�
min

i

"
τij

�
wi

εins
� νins


*
1�σ

�
I̧

i�1

�°S
s�1

νins
S

� γin � ain

�2
4bin

54



where γin corresponds to the multiplier on the capacities’ non-negativity constraints, and

it can be operationalized by noting that the second term corresponds to the power cone:

�
δin, 1,

�
Ş

s�1

νins
S

� γin � ain

��
P P

1
2
, 1
2

3 .

This allows me to substitute the quadratic term for a linear term, while adding the power

cone above as a constraint.

Exponential: consider the following cost function, finpCinq � eainCin � 1. The dual of

this problem is,

min
νins,γin¥0

�
σ�1
σ

�σ�1

σ

Ş

s�1

J̧

j�1

βσ
jn

S
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"
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wi
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� νins


*
1�σ
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� log
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� γin

ain

�
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I̧
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°S
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νins
S

� γin

ain
� I

where γin corresponds to the multiplier on the capacities’ non-negativity constraints. The

key to solving this version of the problem consists on realizing that this cost structure adds

two terms. The last term is linear, and easy to handle. The other term corresponds to a

relative entropy cone tpu, v, wq P R1�2n : u ¥
°n

i�1wi logp
wi
vi
q, vi ¥ 0, wi ¥ 0u of dimension

2n� 1 (see Legat et al. 2021). In terms of the expression above, this insight can be used to

replace this nonlinear term for a linear term δ, and adding the cone pδ, 1, t
°S

s�1
νins
S

�γin
ain

uiq

as an additional constraint.

General Convex Costs: consider a cost function, finpCinq. We solve the problem in

two steps. First, notice that regardless of the capacity cost function the dual of the ex-post

problem in Equation 7 is,

min
νin¥0

I̧

i�1

νinCin �

�
σ�1
σ

�σ�1

σ

J̧

j�1

βσ
jn

�
min

i

"
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�
wi

εin
� νin


*
1�σ

,

and can be written linearly as,

min
νin¥0,µjn¡0,tjn¡0

I̧
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νinCin �
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σ�1
σ

�σ�1

σ

J̧

j�1

βσ
jntjn

s.t µjn ¤ τij
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@i, j; ptjn, µnj , 1q P P

1
σ
,1� 1

σ
3 @j.

For a particular vector Cn and εn, solving the problem above provides a value the vector

of multipliers, νnpCn, εnq, and the optimal value of the objective function, ΠnpCn, εnq.
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The ex-post problem corresponds to

max
Cin¥0

Eεn rΠnpCn, εnqs �
I̧

i�1

finpCinq.

From the envelope theorem, the first order condition for the variable Cin is given by

Eεn rνinpCn, εnqs ¤ f 1inpCinq,

which is a generalization of the gradient in Equation 11. The linearity of the problem implies

that finding the solution is sufficiently fast. This allows me to overcome the challenge of

computing the high-dimensional expectation by approximating it using simulations.

Precisely, given a vector of capacities Cn, I compute expected profits and expected

multipliers averaging over s � 1, . . . , S simulation draws,

Eεn rΠnpCn, εnqs �
1

S

Ş

s�1

ΠnpCn, ε
s
nq, Eεn rνinpCn, εnqs �

1

S

Ş

s�1

νinpCn, ε
s
nq.

Then, I leverage Proposition 1 to use efficient gradient-based optimizers that exploit the

convexity and that the explicit gradients to find the global optimum.

D Additional Results

In Table D.1, I present the results for the estimation of the demand elasticity, σ, and the

home market effects, as described in Equations 16 and 17. Columns (1) and (2) correspond

to the values used in estimation. Column (1) is the elasticity, σM , across models within the

same brand which are used to aggregate quantities and prices at the firm-level. Column (2)

corresponds to the estimate of the elasticity across firms, relevant for the estimation, where

σ̂ � 1�1.593. Column (3) shows the results if the estimation is carried with log. quantities

rather than log shares. Column (4) shows the results from estimating the elasticity in a

single nest, for comparison.

From the regressions estimated in Table D.1, I also retrieve brand fixed effects, γ̂n. In

Figure D.1, I present the correlation between the retrieved brand-specific demand shifters

and the average price for each brand, demonstrating that this measure of quality correlates

positively with prices. Also, I show the distribution of these brand shifters by the country

of origin of each brand.
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Table D.1: Demand Elasticity, Brand Shifters and Home Market Effects

Strategy: Nested Single Nest
Nest: Inner Outer Outer

(1) (2) (3) (4)
Log Share Log Share Log Q Log Q

Log Pricejm -3.280*** -3.887***
[0.343] [0.201]

Log Pricejn -1.593*** -2.154***
[0.170] [0.169]

Home Market 1.068*** 1.001*** 0.636***
[0.154] [0.161] [0.124]

Observations 4,810 617 617 4,885

Notes: This table shows estimates for Regression Equations 16 and (17). Columns (1) corresponds to the estimation of
Equation 16. It contains market-brand-year fixed effects and log prices are instrumented by log tariffs. Columns (2) and (3)
correspond to OLS regressions of log shares and log quantities on the market-brand fixed effects recovered in Column (1).
Column (4) estimates a regression of log quantities on log prices, with log tariffs as instruments, excluding the market-brand-
year fixed effects. All the specifications contain market-year fixed effects. Specifications in columns (2) to (4) also contain
fixed effects at the brand-level and a home market effect that is a dummy variable equal to 1 if the brand that produces
model m is headquartered in market j, and a brand-level fixed effect. Standard errors clustered at the market-brand level
reported in brackets. Significance levels: ***p   0.01, **p   0.05, * p   0.1.

Figure D.1: Brand-Specific Demand Shifters
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Notes: In Panel (a), I show a binscatter plot between log prices and the brand-specific qualities γn computed in the
regression in Equation 17. In Panel (b), I show box plots with the distribution of brand qualities by the country of origin
of each brand.
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In Figure D.2, I present the estimates of the country-specific demand shifters, δ̂j , as

described in Equation 18. These shifters measure aggregate expenditure on cars in market

j and the ideal price index at the observed equilibrium.

Figure D.2: Market-Specific Shifters
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No Data

Notes: In this map, I plot the value of the market-specific fixed effects δj computed in the regression of Equation 18.

In Table D.2, the values of the estimates of the parameters in the structural model

described in Sections 3 and 4. Estimates are computed using the simulated method of

moments using the moments described Table E.1. Standard errors are computed using the

formula provided in Gourieroux et al. (1993).

Table D.2: Parameter Estimates of the Structural Model

Parameter Description Estimate Standard Error

δα0 Constant - Capacity Cost 3.389 0.001
δα1 Log. Population - Capacity Cost 0.021 0.002
δα2 Log. Road Density - Capacity Cost 0.009 0.001
δα3 Log. GDP Per Capita - Capacity Cost 0.048 0.002
δα4 Home Dummy - Capacity Cost -0.277 0.001
δα5 Log. Distance HQ - Capacity Cost 0.050 0.002
δα6 Land Availability - Capacity Cost -0.125 0.001
ξα Variance - Capacity Cost 0.001 0.001
δε0 Constant - Local Productivity -3.610 0.002
δε1 Log. Population - Local Productivity 0.034 0.003
δε2 Log. Road Density - Local Productivity 0.025 0.003
δε3 Log. GDP Per Capita - Local Productivity 0.071 0.002
δε4 Home Dummy - Local Productivity 0.227 0.002
δε5 Log. Distance HQ - Local Productivity -0.042 0.003
δε6 Land Availability - Local Productivity -0.052 0.002
ξε Variance - Local Productivity 0.011 0.003
δw2 Wage Shifter - Income Group 2 0.030 0.001
δw3 Wage Shifter - Income Group 3 0.022 0.003
δw4 Wage Shifter - Income Group 4 0.086 0.003
δw5 Wage Shifter - Income Group 5 0.806 0.002
δw6 Wage Shifter - Income Group 6 0.319 0.001
κ1 Damage 100-Year Flood 0.227 0.005
κ2 Damage 10-Year Flood 0.415 0.001

Notes: This table shows estimates for the parameters of the structural model introduced in Section
4.2. Estimates computed using SMM with the moments in Table E.1. Model fit is discussed in
Appendix Section E.2. Standard errors computed using the formula for simulated method of
moments estimators provided in Gourieroux et al. (1993).
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Figure D.3: Change in Production Shares for SSP5-8.5

(a) China (b) United States

(c) Japan (d) Germany

(e) India (f) Mexico

(g) South Korea (h) Brazil

(i) Spain (j) France

Notes: These maps show changes in production shares (in p.p.) between the current risk landscape, where 10-year floods
occur with 10% probability and 100-year floods have a 1% probability, and the projected probabilities for SSP5-8.5. Regions
in pink lose production shares, regions in green gain. The estimates used to simulate the model are in Table D.2. The
probability projections used come from a multimodel ensemble for SSP5-8.5 from the Climate Change Knowledge Portal of
the World Bank. The administrative units in the map correspond to GAUL1 units.
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E Estimation

E.1 Moments

Table E.1 shows the moments targeted for the estimation of the parameters in the structural

model described in Sections 3 and 4. In describing these moments, I abuse notation as

production Yin will be equal to 0 in most places, deeming log Yin � 8. Instead, I compute

the log over the selected sample for which Yin ¡ 0. This is harmless as I am applying

the same selection criteria in the data and in the model. For each moment, I present the

value in the data and in the model, and the squared percentage deviation. The variables

tlogGDPi, logPopi, logRoadsi, Landiu are demeaned.

Table E.1: Targeted Moments

Description Data Model % Dev. Sq Description Data Model % Dev. Sq

E
�°I

i�1 log Yin

�
53.60 37.75 0.09 E

�°I
i�1 log Yin � 1 tGi � 3u

�
3.68 2.16 0.17

E
�°I

i�1 log Yin � logGDPPCi

�
-15.36 -13.31 0.02 E

�°I
i�1 log Yin � 1 tGi � 4u

�
4.32 3.24 0.06

E
�°I

i�1 log Yin � logPopulationi

�
39.07 29.54 0.06 E

�°I
i�1 log Yin � 1 tGi � 5u

�
10.40 4.82 0.29

E
�°I

i�1 log Yin � logRoadDensi

�
6.79 7.88 0.03 E

�°I
i�1 log Yin � 1 tGi � 6u

�
7.18 6.24 0.02

E
�°I
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E.2 Model Fit

In Table E.1, I show the value of the targeted moments in the data, in the model and the

percentage deviation. Overall, the estimation procedure performs reasonably well, matching

successfully most of the targeted moments. The model does a good job at matching the

moments related to the geographic location of plants, and the features of the distributions

of plants and total production at the firm level. However, the procedure struggles with four

moments. The worst moment corresponds to the difference in plant production between the

first and second largest plants, where the difference implied by the estimates is larger than
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the one in the data. Second, the model underestimates both average production and number

of plants in countries in the second largest bin of GDP per capita, which includes Belgium,

Spain, France, the United Kingdom, Italy, Japan and Korea. However, it is worth noting

that I am matching the moments for production and plant location in those countries by

local firms. Third, the model is overestimating the impact of 10-year floods on production,

although it is matching the impact of 100-year floods closely.

In Figure E.1, I explore the performance of the model in some moments that are not

directly targeted. Specifically, I analyze how the model replicates the sales, plant location,

and production at the country level, rather than at the smaller geographical units in which

the firm decides. The relationship of the sales by country generated by the model and the

data is very good, with a high R2 and intercept close to 0 and a slope coefficient close to

1. Regarding production at the country level, the model does a good job at replicating

production in big countries, but yields too little production in small countries.

Figure E.1: Model Fit - Sales and Production by Country
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0
5

10
Lo

g. 
Sa

les
 by

 Co
un

try
 - M

od
el

2 4 6 8 10
Log. Sales by Country - Data

(b) Production by Country

-5
0

5
10

Lo
g. 

Pro
du

ctio
n b

y C
ou

ntr
y -

 M
od

el

2 4 6 8 10
Log. Production by Country - Data

Notes: In Panel (a), I show a binscatter plot for the log of total sales in the model and in the data. In
Panel (b), I show a biscatter plot for log of total production in the model and in the data.

Figure E.2 shows that the model produces a geographic distribution of plants that

resembles the one in the data as shown in Panel (a), where I show the number of plants

per country in the data and in the model as a binscatter plot. In Panel (b), I show the

distributions of log production per firm. In Panel (c), I plot a histogram for the distribution

of the number of plants. In particular, the model does a good job in matching the number

firms with few plants and has a harder time in matching firms in the right tail of the

distribution. One implication of replicating this distribution is that the model, matches the

number of zeros in the data. In fact, the average firm in the data has 5.26 plants, and in

the model 5.33. Clearly, this is not a coincidence since this is an estimation target. Finally,

in Panel (d) I show the distribution of plant sizes, as measured by log output per plant,

where the model has a harder time in matching the empirical distribution. Basically, the
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plant size distribution inherits the Log-Normal shape, that comes from the distributional

assumptions I impose over the structural errors. The empirical distribution of plant sizes is

somewhat skewed to the left, which is a feature that is challenging to match with Log-Normal

distributions that are right-skewed. However, the model does a good job in matching the

share of small plants, which is also a moment included in the estimation.

Figure E.2: Model Fit - Distribution of Plants by Firm and on Space

(a) Plants by Country
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(b) Density of Production by Firm
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(c) Density of Plants by Firm
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Notes: In Panels (a), I show the number of plants per country in the data and in the model as a binscatter
plot. In Panel (b) I show a histogram of the log quantity produced per firm, both in the data and in the
model. In Panel (c) I show a histogram of the number of plants per firm, both in the data and in the
model. In Panel (d), I show a histogram of plant sizes, as measured by log output per plant, in the data
and in the model.

F Additional Counterfactual Exercises

F.1 Spatially Correlated Weather Shocks

An important assumption in the baseline exercise is that the weather shocks are independent

across locations. However, in reality, one could expect that regions close to each other are

likely to experience spatially correlated shocks, and that firms adjust their plant location

taking this positive covariance into account.

I assume that the spatial correlation in the disasters between two locations is a function
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of the distance between the centroids of the two administrative units and exponentially

decays as locations get farther away. I choose different values for this exponential decay

and compare the predictions of the model under different values of the decay.

I generate correlated weather shocks by assuming that these random variables are from

a latent spatially-correlated Normal distribution. Let ri be the probability that κi is equal

to κ1 and si the probability that κi is equal to κ2 and define Z1
i � Φ�1priq and Z

2
i � Φ�1psiq

and define the following multinomial distribution:

κin �

$'''&
'''%
κ1 if u�in ¤ Z1

i

κ2 if Z1
i ¤ u�in ¤ Z2

i

1 if Z2
i ¤ u�in,

where the u�in are distributed as the following Multivariate Normal:

u�n � N p0,Ωq .

I assume that the entries of the variance-covariance matrix Ω are given by

Ωii � 1 for all i, Ωij � expp�λdistijq for all i � j,

where λ measures the decay in the degree of spatial correlation in the latent variable. To

illustrate the implied correlations in the weather shocks I pick different values of λ and

consider two locations at 300km (1st percentile), 800km (5th percentile) and 1300 km (10th

percentile). These are roughly the distances between the centroids of Ohio and Indiana,

between Massachusetts and Virginia, and Madrid and Dublin, respectively.

Table F.1: Correlation in Weather Shocks for Different Values of λ

Distance 300 800 1300

λ � 0.02
Correlation in Latent Variables 0.549 0.202 0.074
Correlation in Weather Shocks 0.294 0.083 0.027

λ � 0.1
Correlation in Latent Variables 0.050 0.000 0.000
Correlation in Weather Shocks 0.018 0.000 0.000

63



G A Simple Two Location, One Market Model

In this appendix, I present a simplification of the model in Section 3 to study its properties

and provide intuition on the identification.

G.1 Analytics

There is a single market, i.e., J � 1, and two potential production locations, i.e. I � 2. I

assume that the market size and the wages in each location are equal to 1, i.e., β � 1, w1 �

1, w2 � 1. To ship goods from each plant to consumers, firms need to pay an homogeneous

iceberg cost equal to τ . Only location 1 can experience a weather disruption that is binary

and equal to κ with probability p or to 1. The undisrupted production costs in each location

are given by z1 and z2, assuming z1 ¡ z2 ¡ κz1 without loss.

Consider the capacity choice problem for a particular firm with productivity ϕ,

max
C1,C2

p1� pqΠ pC1, C2, z1, z2q � pΠ pC1, C2, κz1, z2q � α pC1 � C2q .

The ex-post profit function is given by

Π pC1, C2, ε1, ε2q � max
q1,q2¥0

pq1 � q2q
σ�1
σ �

τ

ϕ

�
q1
ε1

�
q2
ε2



s.t τq1 ¤ C1 @i rν1s , τq2 ¤ C2 @i rν2s .

where I denote by ε1 and ε2, the realized productivities in each location. For arbitrary

values of C1, C2, ε1, ε2, and ε1 ¥ ε2 (again, without loss), ex-post profits can take four

values,

Π pC1, C2, ε1, ε2q �

$''''''''''''''''&
''''''''''''''''%

pC1 � C2q
σ�1
σ τ

1�σ
σ � C1

ϕε1
� C2

ϕε2
if C1�C2

τ
 

�
σ�1
σ

�σ
τ�σϕσεσ2

pσ�1
σ qσ�1

σ
τ1�σ pϕε2q

σ�1 � C1
ϕ

�
1
ε2
� 1

ε1

�
if C1�C2

τ
¥

�
σ�1
σ

�σ
τ�σϕσεσ2

and C1
τ
 

�
σ�1
σ

�σ
τ�σϕσεσ2

pC1q
σ�1
σ τ

1�σ
σ � C1

ϕε1
if C1

τ
 

�
σ�1
σ

�σ
τ�σϕσεσ1

and C1
τ
¥

�
σ�1
σ

�σ
τ�σϕσεσ2

pσ�1
σ qσ�1

σ
τ1�σ pϕε1q

σ�1 if C1
τ
¥

�
σ�1
σ

�σ
τ�σϕσεσ1 .

In the first case, capacity in both plants binds. In the second case, capacity in the most

productive plant binds, but in the other plant, it does not, although it is being used. In

the third case, capacity in the best plant is binding, and the other plant is unused. In the

fourth case, capacity in the most productive plant is not binding. Regardless of the plants’

capacities, the firm has incentives to use the most productive plant as much as possible,

where the quantity is dictated either by demand and production costs, or by the capacity

constraint.
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Based on the profit function above, one can compute ν1 pC1, C2, ε1, ε2q and

ν2 pC1, C2, ε1, ε2q by taking the derivative of the profit function with respect to C1 and

C2. For example, for C1 this yields,

ν1 pC1, C2, ε1, ε2q �

$''''''''''''''''&
''''''''''''''''%

σ�1
σ

pC1 � C2q
� 1

σ τ
1�σ
σ � 1

ϕε1
if C1�C2

τ
 

�
σ�1
σ

�σ
τ�σϕσεσ2

�
1
ε2
� 1

ε1

�
if C1�C2

τ
¥

�
σ�1
σ

�σ
τ�σϕσεσ2

and C1
τ
 

�
σ�1
σ

�σ
τ�σϕσεσ2

σ�1
σ

pC1q
� 1

σ τ
1�σ
σ � 1

ϕε1
if C1

τ
 

�
σ�1
σ

�σ
τ�σϕσεσ1

and C1
τ
¥

�
σ�1
σ

�σ
τ�σϕσεσ2

0 if C1
τ
¥

�
σ�1
σ

�σ
τ�σϕσεσ1 ,

which I plot for both capacities, fixing an arbitrary value for the other, below.

Figure G.1: Ex-Post Multipliers

(a) ν1 (b) ν2

Turning to the capacity choice problem, the first order conditions for the capacity choice

problem are, Eε1 rν1 pC1, C2, ε1, ε2qs ¤ α, Eε1 rν2 pC1, C2, ε1, ε2qs ¤ α. For instance, if we

were to assume that the parameters of the model are such, that it is profitable to only use

the plant that is the most productive in each state of the world, the optimal values for

capacity investment are:

C�
1 �

�
α

1� p
�

1

ϕz1


�σ �
σ � 1

σ


σ

τ1�σ; C�
2 �

�
α

p
�

1

ϕz2


�σ �
σ � 1

σ


σ

τ1�σ

Since these assumptions are restrictive, I instead turn to solving the optimal values of

capacities numerically for different assumptions on the distribution of shocks. I explore two

different instances. First, in Figure G.2, a case in which I hold κ fixed and vary p, and,

second, in Figure G.3, a case in which I vary the value of p, and adjust z1 holding κ fixed in

such a way that the mean of the distribution of shocks is held constant
�
z1ppq �

1�κp
1�p

	
, but

the variance increases, to study the implications of the model for mean preserving spreads.
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Figure G.2: Optimal Capacity Investment with Increasing Probabilities

(a) C1 (b) C2 (c) Spare Capacity

Figure G.3: Optimal Capacity Investment with Mean Preserving Spreads

(a) C1 (b) C2 (c) Spare Capacity

In both cases, I show the optimal values of capacity and the expected spare capacity, varying

the value of α as well.

G.2 Identification

Building on the simple example in Subsection G.1, I illustrate how the values of the location

parameters of the productivities, z1n, and the capacity costs, αin, are separately identified.

I assume that trade costs are homogeneous and equal to τ � 1.05, that the probability of the

shock, p, is equal to 0.5, that κ � 0.5, that σ � 2 and that β � 1. Firms are heterogeneous

in their productivities ϕn. I further assume that both αin and z1n are drawn from these

Log-Normal distributions, αin � ᾱLogNormalp�1{2, 1q and z1n � z̄LogNormalp�1{2, 1q,

respectively. The parameters to identify are ᾱ and z̄.

I define the two following moments, which are the same as the first and the eight moment

used for estimation as described in Table E.1,

m1 � E

�
1

2

¸
i�1,2

log Yin

�
and m2 � E

�
1

2

¸
i�1,2

Din

�
.
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In this setting, I show how the values of the moments m1 and m2 vary with the value of

ᾱ and z̄. To analyze this, I simulate the model for 10,000 firms, setting as “true” values,

ᾱ � 0.25 and z̄ � 1.25, and then I compare how the values of moments m1 and m2

corresponding to the “true” model compare to those generated under alternative values by

computing the squared percentage deviation. In Figure G.4, I plot in black, combinations

Figure G.4: Impact of ᾱ and z̄ on Moments

(a) m1 (b) m2 (c) m1 �m2

of the values for the parameters ᾱ and z̄ in which the value of the percentage squared

deviation between the simulated moment and the “true” data is smaller than 10�5. The

figure highlights how moments m1 and m2 jointly identify the parameters of interest. As

shown, m1 is a moment that varies mostly with ᾱ. Intuitively, in this context firms are

often capacity constrained and the capacity choice is more responsive to changes in its cost.

On the contrary, m2 is a moment that varies mostly with z̄. Intuitively, in this setting, if

either z̄ is too high or too low, firms have incentives to concentrate their production in only

one plant. Although neither moment alone is individually identifying one of the parameters,

once we consider m1 and m2 jointly, there is a single combination of parameters for which

the sum of squared percentage deviation is equal to 0.
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